火柴游戲
來源:本站原創(chuàng) 2008-05-07 18:12:33
規(guī)則一:若限制每次所取的火柴數(shù)目最少一根,最多三根,則如何玩才可致勝?
例如:桌面上有n=15根火柴,甲?乙兩人輪流取,甲先取,則甲應(yīng)如何取才能致勝?
為了要取得最後一根,甲必須最後留下零根火柴給乙,故在最後一步之前的輪取中,甲不能留下1根或2根或3根,否則乙就可以全部取走而獲勝。如果留下4根,則乙不能全取,則不管乙取幾根(1或2或3),甲必能取得所有剩下的火柴而贏了游戲。同理,若桌上留有8根火柴讓乙去取,則無論乙如何取,甲都可使這一次輪取後留下4根火柴,最後也一定是甲獲勝。由上之分析可知,甲只要使得桌面上的火柴數(shù)為4?8?12?16…等讓乙去取,則甲必穩(wěn)操勝券。因此若原先桌面上的火柴數(shù)為15,則甲應(yīng)取3根。(∵15-3=12)若原先桌面上的火柴數(shù)為18呢?則甲應(yīng)先取2根(∵18-2=16)。
規(guī)則二:限制每次所取的火柴數(shù)目為1至4根,則又如何致勝?
原則:若甲先取,則甲每次取時,須留5的倍數(shù)的火柴給乙去取。
通則:有n支火柴,每次可取1至k支,則甲每次取後所留的火柴數(shù)目必須為k+1之倍數(shù)。
規(guī)則三:限制每次所取的火柴數(shù)目不是連續(xù)的數(shù),而是一些不連續(xù)的數(shù),如1?3?7,則又該如何玩法?
分析:1?3?7均為奇數(shù),由於目標為0,而0為偶數(shù),所以先取者甲,須使桌上的火柴數(shù)為偶數(shù),因為乙在偶數(shù)的火柴數(shù)中,不可能再取去1?3?7根火柴後獲得0,但假使如此也不能保證甲必贏,因為甲對於火柴數(shù)的奇或偶,也是無法依照己意來控制的。因為〔偶-奇=奇,奇-奇=偶〕,所以每次取後,桌上的火柴數(shù)奇偶相反。若開始時是奇數(shù),如17,甲先取,則不論甲取多少(1或3或7),剩下的便是偶數(shù),乙隨後又把偶數(shù)變成奇數(shù),甲又把奇數(shù)回覆到偶數(shù),最後甲是注定為贏家;反之,若開始時為偶數(shù),則甲注定會輸。
通則:開局是奇數(shù),先取者必勝;反之,若開局為偶數(shù),則先取者會輸。
規(guī)則四:限制每次所取的火柴數(shù)是1或4(一個奇數(shù),一個偶數(shù))。
分析:如前規(guī)則二,若甲先取,則甲每次取時留5的倍數(shù)的火柴給乙去取,則甲必勝。此外,若甲留給乙取的火柴數(shù)為5之倍數(shù)加2時,甲也可贏得游戲,因為玩的時候可以控制每輪所取的火柴數(shù)為5(若乙取1,甲則取4;若乙取4,則甲取1),最後剩下2根,那時乙只能取1,甲便可取得最後一根而獲勝。
通則:若甲先取,則甲每次取時所留火柴數(shù)為5之倍數(shù)或5的倍數(shù)加2。
相關(guān)文章
- 小學(xué)1-6年級作文素材大全
- 全國小學(xué)升初中語數(shù)英三科試題匯總
- 小學(xué)1-6年級數(shù)學(xué)天天練
- 小學(xué)1-6年級奧數(shù)類型例題講解整理匯總
- 小學(xué)1-6年級奧數(shù)練習(xí)題整理匯總
- 小學(xué)1-6年級奧數(shù)知識點匯總
- 小學(xué)1-6年級語數(shù)英教案匯總
- 小學(xué)語數(shù)英試題資料大全
- 小學(xué)1-6年級語數(shù)英期末試題整理匯總
- 小學(xué)1-6年級語數(shù)英期中試題整理匯總
- 小學(xué)1-6年語數(shù)英單元試題整理匯總
點擊查看更多