火柴游戲
來源:本站原創(chuàng) 2004-12-02 18:45:06
規(guī)則一:若限制每次所取的火柴數(shù)目最少一根,最多三根,則如何玩才可致勝?
例如:桌面上有n=15根火柴,甲?乙兩人輪流取,甲先取,則甲應(yīng)如何取才能致勝?
為了要取得最後一根,甲必須最後留下零根火柴給乙,故在最後一步之前的輪取中,甲不能留下1根或2根或3根,否則乙就可以全部取走而獲勝。如果留下4根,則乙不能全取,則不管乙取幾根(1或2或3),甲必能取得所有剩下的火柴而贏了游戲。同理,若桌上留有8根火柴讓乙去取,則無論乙如何取,甲都可使這一次輪取後留下4根火柴,最後也一定是甲獲勝。由上之分析可知,甲只要使得桌面上的火柴數(shù)為4?8?12?16…等讓乙去取,則甲必穩(wěn)操勝券。因此若原先桌面上的火柴數(shù)為15,則甲應(yīng)取3根。(∵15-3=12)若原先桌面上的火柴數(shù)為18呢?則甲應(yīng)先取2根(∵18-2=16)。
規(guī)則二:限制每次所取的火柴數(shù)目為1至4根,則又如何致勝?
原則:若甲先取,則甲每次取時(shí),須留5的倍數(shù)的火柴給乙去取。
通則:有n支火柴,每次可取1至k支,則甲每次取後所留的火柴數(shù)目必須為k+1之倍數(shù)。
規(guī)則三:限制每次所取的火柴數(shù)目不是連續(xù)的數(shù),而是一些不連續(xù)的數(shù),如1?3?7,則又該如何玩法?
分析:1?3?7均為奇數(shù),由於目標(biāo)為0,而0為偶數(shù),所以先取者甲,須使桌上的火柴數(shù)為偶數(shù),因?yàn)橐以谂紨?shù)的火柴數(shù)中,不可能再取去1?3?7根火柴後獲得0,但假使如此也不能保證甲必贏,因?yàn)榧讓?duì)於火柴數(shù)的奇或偶,也是無法依照己意來控制的。因?yàn)椤才?奇=奇,奇-奇=偶〕,所以每次取後,桌上的火柴數(shù)奇偶相反。若開始時(shí)是奇數(shù),如17,甲先取,則不論甲取多少(1或3或7),剩下的便是偶數(shù),乙隨後又把偶數(shù)變成奇數(shù),甲又把奇數(shù)回覆到偶數(shù),最後甲是注定為贏家;反之,若開始時(shí)為偶數(shù),則甲注定會(huì)輸。
通則:開局是奇數(shù),先取者必勝;反之,若開局為偶數(shù),則先取者會(huì)輸。
規(guī)則四:限制每次所取的火柴數(shù)是1或4(一個(gè)奇數(shù),一個(gè)偶數(shù))。
分析:如前規(guī)則二,若甲先取,則甲每次取時(shí)留5的倍數(shù)的火柴給乙去取,則甲必勝。此外,若甲留給乙取的火柴數(shù)為5之倍數(shù)加2時(shí),甲也可贏得游戲,因?yàn)橥娴臅r(shí)候可以控制每輪所取的火柴數(shù)為5(若乙取1,甲則取4;若乙取4,則甲取1),最後剩下2根,那時(shí)乙只能取1,甲便可取得最後一根而獲勝。
通則:若甲先取,則甲每次取時(shí)所留火柴數(shù)為5之倍數(shù)或5的倍數(shù)加2。
相關(guān)文章
- 小學(xué)1-6年級(jí)作文素材大全
- 全國(guó)小學(xué)升初中語數(shù)英三科試題匯總
- 小學(xué)1-6年級(jí)數(shù)學(xué)天天練
- 小學(xué)1-6年級(jí)奧數(shù)類型例題講解整理匯總
- 小學(xué)1-6年級(jí)奧數(shù)練習(xí)題整理匯總
- 小學(xué)1-6年級(jí)奧數(shù)知識(shí)點(diǎn)匯總
- 小學(xué)1-6年級(jí)語數(shù)英教案匯總
- 小學(xué)語數(shù)英試題資料大全
- 小學(xué)1-6年級(jí)語數(shù)英期末試題整理匯總
- 小學(xué)1-6年級(jí)語數(shù)英期中試題整理匯總
- 小學(xué)1-6年語數(shù)英單元試題整理匯總
點(diǎn)擊查看更多