日本精品一区,蜜桃六月天综合网,欧美99,草草影院ccyycom

奧數(shù)網(wǎng)
全國(guó)站

奧數(shù) > 小學(xué)資源庫(kù) > 奧數(shù)練習(xí)題 > 五年級(jí)奧數(shù) > 數(shù)的整除問(wèn)題 > 正文

幾何競(jìng)賽題的特殊解法

2005-09-23 21:21:25      下載試卷

幾何形體知識(shí)是小學(xué)數(shù)學(xué)的重要內(nèi)容,對(duì)常規(guī)的幾何題學(xué)生比較容易解答,但是對(duì)有一定難度的競(jìng)賽題,指導(dǎo)學(xué)生解題時(shí),要引導(dǎo)學(xué)生認(rèn)真地觀察圖形的形狀、位置,抓住圖形的主要特征,選擇適當(dāng)?shù)姆椒ㄟM(jìn)行分析,思考,從而找出解決問(wèn)題的途徑。

  一、等量代換法

  例1 如圖1,已知三角形ABC的面積為56平方厘米,是平行四邊形DEFC的2倍。求陰影部分的面積。

  分析從所給的條件來(lái)看,不知道△ADE任何一條邊及其所對(duì)應(yīng)的高,因此很難直接求出△ADE的面積。只能從已知面積的部分與所求圖形面積之間的關(guān)系來(lái)著手分析。由題意可知四邊形DEFC為平行四邊形,所以連接E、C點(diǎn),△DEC的面積為平行四邊形面積的一半。根據(jù)同底等高的三角形面積相等,可知△AED與△DEC的面積相等,而△DEC的面積等于平行四邊形面積的一半,因此,△ADE的面積也等于平行四邊形面積的一半。問(wèn)題即可解決。

  列式:56÷2÷2=14(平方厘米)

  二、轉(zhuǎn)化法

  例2 如圖2,四邊形ABCD為長(zhǎng)方形,BC=15厘米,CD=8厘米,三角形AFB的面積比三角形DEF的面積大30平方厘米,求DE的長(zhǎng)。

 。ǖ谌龑眯W(xué)生數(shù)學(xué)報(bào)競(jìng)賽決賽題)

  分析把三角形ABF和三角形DEF分別加上四邊形BCDF,那么它們分別轉(zhuǎn)化成長(zhǎng)方形ABCD和三角形BCE。根據(jù)三角形ABF比三角形DEF的面積大30平方厘米,把它們分別加上四邊形BCDF后,即轉(zhuǎn)化成長(zhǎng)方形ABCD比三角形BCF的面積大30平方厘米。先求出三角形BCE的面積,根據(jù)三角形的面積和BC的長(zhǎng)度,求出CE的長(zhǎng)度,DE的長(zhǎng)度即可求出。列式:(15×8-30)×2÷15-8=4(平方厘米)

  三、假設(shè)法

  例3 圖3中長(zhǎng)方形的面積為35平方厘米,左邊直角三角形的面積為5平方厘米,右上角三角形的面積為7平方厘米,那么中間三角形(陰影部分)的面積是____平方厘米。

  (1996年小學(xué)數(shù)學(xué)奧林匹克競(jìng)賽初賽B卷題)

  分析因?yàn)殚L(zhǎng)方形的面積為35平方厘米,不妨假設(shè)AB=5厘米,AD=7厘米,因?yàn)镾△ABE=5平方厘米,所以BE=5×2÷5=2厘米,EC=7-2=5厘米,同理:DF=7×2÷5=2厘米,CF=5-2=3厘米,那么S△ECF=5×3÷2=7.5厘米,陰影部分面積即可求出。列式:35-(7+5+7.5)=15.5(平方厘米)

  四、巧用性質(zhì)

  例4 如圖4,三角形ABC是直角三角形,已知陰影(Ⅰ)的面積比陰影(Ⅱ)的面積小23平方厘米,BC的長(zhǎng)度是多少?(π=3.14)

 。ū本┦械谌龑糜罕瓟(shù)學(xué)競(jìng)賽試題)

  分析此題初看似乎無(wú)法解答,因?yàn)殛幱安糠郑á瘢、(Ⅱ)都是不?guī)則圖形,但仔細(xì)觀察,不難看出,陰影(Ⅰ)是半圓的一部分,陰影(Ⅱ)是三角形ABC的一部分,根據(jù)“差不變的性質(zhì)”可以把(Ⅰ)和(Ⅱ)分別加(Ⅲ),分別得到半圓和△ABC,它們的面積差不變,這樣就可以求出三角

  ×

  2÷20=18(厘米)

  五、參數(shù)法

  例5 將圖5(a)中的三角形紙片沿著虛線折疊的粗實(shí)圖形面積(圖b)與原三角形的面積比為2∶3,已知圖(b)中三個(gè)畫(huà)陰影的三角形面積之和為1,那么重疊部分的面積為_(kāi)_____。

 。1988年北京市小學(xué)數(shù)學(xué)邀請(qǐng)賽復(fù)賽題)

  分析圖b中重疊部分是不規(guī)則的四邊形,很難直接求出它的面積。從圖b中可以觀察陰影部分面積加上空白部分面積的2倍等于原三角形的面積,實(shí)線部分的面積應(yīng)為空白部分面積加上1,根據(jù)這一等量關(guān)系可以列方程。設(shè)空白部分面積為x,(x+1)∶(2x+1)=2∶3,x=1。

  六、用比例解

  例6 如圖6,四邊形ABCD被AC和BD分成甲、乙、丙、丁四部分,已知BE=60厘米,CE=40厘米,DE=30厘米,AE=80厘米。問(wèn)丙、丁兩個(gè)三角形的面積之和是甲、乙兩個(gè)三角形的面積之和多少倍?(第三屆華羅庚金杯賽決賽題)

  分析從圖中可以看出甲、丁都在△ADC中,所以兩個(gè)三角形的高相等,乙和丁都在△ABC中,所以兩個(gè)三角形的高也相等。根據(jù)高相等的兩個(gè)三角形的面積比等于底邊長(zhǎng)之比,那么:

  S∶S=AE∶EC=80∶40=2∶1S=2S丁

  S∶S=BE∶DE=60∶30=2∶1S=2S丁

  S+S=4S

  S∶S=BE∶DE=60∶30=2∶1S=2S=4S

  所以,(S+S)∶(S+S

  =(4S+S)∶(S+S)=5S÷4S

  

來(lái)源:網(wǎng)友投稿

      歡迎訪問(wèn)奧數(shù)網(wǎng),您還可以在這里獲取百萬(wàn)真題,2023小升初我們一路相伴。>>[點(diǎn)擊查看]

分類(lèi)

專題

類(lèi)型

搜索

  • 歡迎掃描二維碼
    關(guān)注奧數(shù)網(wǎng)微信
    ID:aoshu_2003

  • 歡迎掃描二維碼
    關(guān)注中考網(wǎng)微信
    ID:zhongkao_com

本周新聞動(dòng)態(tài)

重點(diǎn)中學(xué)快訊

奧數(shù)關(guān)鍵詞

廣告合作請(qǐng)加微信:17310823356

廣告服務(wù) - 營(yíng)銷(xiāo)合作 - 友情鏈接 - 網(wǎng)站地圖 - 服務(wù)條款 - 誠(chéng)聘英才 - 問(wèn)題反饋 - 手機(jī)版

京ICP備09042963號(hào)-15 京公網(wǎng)安備 11010802027854號(hào)

違法和不良信息舉報(bào)電話: 010-56762110 舉報(bào)郵箱:wzjubao@tal.com

奧數(shù)版權(quán)所有Copyright@2005-2021 . All Rights Reserved.