解析幾何的產(chǎn)生
來源:網(wǎng)絡 2008-02-25 11:18:48

十六世紀以后,由于生產(chǎn)和科學技術的發(fā)展,天文、力學、航海等方面都對幾何學提出了新的需要。比如,德國天文學家開普勒發(fā)現(xiàn)行星是繞著太陽沿著橢圓軌道運行的,太陽處在這個橢圓的一個焦點上;意大利科學家伽利略發(fā)現(xiàn)投擲物體試驗著拋物線運動的。這些發(fā)現(xiàn)都涉及到圓錐曲線,要研究這些比較復雜的曲線,原先的一套方法顯然已經(jīng)不適應了,這就導致了解析幾何的出現(xiàn)。
1637年,法國的哲學家和數(shù)學家笛卡爾發(fā)表了他的著作《方法論》,這本書的后面有三篇附錄,一篇叫《折光學》,一篇叫《流星學》,一篇叫《幾何學》。當時的這個“幾何學”實際上指的是數(shù)學,就像我國古代“算術”和“數(shù)學”是一個意思一樣。
笛卡爾的《幾何學》共分三卷,第一卷討論尺規(guī)作圖;第二卷是曲線的性質(zhì);第三卷是立體和“超立體”的作圖,但他實際是代數(shù)問題,探討方程的根的性質(zhì)。后世的數(shù)學家和數(shù)學史學家都把笛卡爾的《幾何學》作為解析幾何的起點。
從笛卡爾的《幾何學》中可以看出,笛卡爾的中心思想是建立起一種“普遍”的數(shù)學,把算術、代數(shù)、幾何統(tǒng)一起來。他設想,把任何數(shù)學問題化為一個代數(shù)問題,在把任何代數(shù)問題歸結(jié)到去解一個方程式。
為了實現(xiàn)上述的設想,笛卡爾茨從天文和地理的經(jīng)緯制度出發(fā),指出平面上的點和實數(shù)對(x,y)的對應關系。x,y的不同數(shù)值可以確定平面上許多不同的點,這樣就可以用代數(shù)的方法研究曲線的性質(zhì)。這就是解析幾何的基本思想。
具體地說,平面解析幾何的基本思想有兩個要點:第一,在平面建立坐標系,一點的坐標與一組有序的實數(shù)對相對應;第二,在平面上建立了坐標系后,平面上的一條曲線就可由帶兩個變數(shù)的一個代數(shù)方程來表示了。從這里可以看到,運用坐標法不僅可以把幾何問題通過代數(shù)的方法解決,而且還把變量、函數(shù)以及數(shù)和形等重要概念密切聯(lián)系了起來。
解析幾何的產(chǎn)生并不是偶然的。在笛卡爾寫《幾何學》以前,就有許多學者研究過用兩條相交直線作為一種坐標系;也有人在研究天文、地理的時候,提出了一點位置可由兩個“坐標”(經(jīng)度和緯度)來確定。這些都對解析幾何的創(chuàng)建產(chǎn)生了很大的影響。
在數(shù)學史上,一般認為和笛卡爾同時代的法國業(yè)余數(shù)學家費爾馬也是解析幾何的創(chuàng)建者之一,應該分享這門學科創(chuàng)建的榮譽。
費爾馬是一個業(yè)余從事數(shù)學研究的學者,對數(shù)論、解析幾何、概率論三個方面都有重要貢獻。他性情謙和,好靜成癖,對自己所寫的“書”無意發(fā)表。但從他的通信中知道,他早在笛卡爾發(fā)表《幾何學》以前,就已寫了關于解析幾何的小文,就已經(jīng)有了解析幾何的思想。只是直到1679年,費爾馬死后,他的思想和著述才從給友人的通信中公開發(fā)表。
笛卡爾的《幾何學》,作為一本解析幾何的書來看,是不完整的,但重要的是引入了新的思想,為開辟數(shù)學新園地做出了貢獻。
相關文章
- 小學1-6年級作文素材大全
- 全國小學升初中語數(shù)英三科試題匯總
- 小學1-6年級數(shù)學天天練
- 小學1-6年級奧數(shù)類型例題講解整理匯總
- 小學1-6年級奧數(shù)練習題整理匯總
- 小學1-6年級奧數(shù)知識點匯總
- 小學1-6年級語數(shù)英教案匯總
- 小學語數(shù)英試題資料大全
- 小學1-6年級語數(shù)英期末試題整理匯總
- 小學1-6年級語數(shù)英期中試題整理匯總
- 小學1-6年語數(shù)英單元試題整理匯總