克里斯朵夫與伊麗莎白共同從事一項(xiàng)有關(guān)平方數(shù)的研究工作。克里斯朵夫宣稱他發(fā)現(xiàn)了一項(xiàng)有關(guān)于8個(gè)數(shù)字的平方數(shù)的特殊性質(zhì)。
他發(fā)現(xiàn)可將7、8、9、10、11、12、13、14這8個(gè)數(shù)字分成兩組,每一組內(nèi)數(shù)字的平方之和相等,即
72+102+122+132=462=82+92+112+142
克里斯朵夫?yàn)榱舜艘话l(fā)現(xiàn)而沾沾自喜。伊麗莎白在仔細(xì)分析這些數(shù)字后,認(rèn)為14是7的兩倍,這可能是一個(gè)重要的線索,但隨即發(fā)現(xiàn)這并不是重點(diǎn)。然后她觀察5、6、7、8、9、10、11、12的平方數(shù),她發(fā)現(xiàn)將這8個(gè)數(shù)字分成兩組,兩組內(nèi)數(shù)字的平方之和也會(huì)相等,她還推論只要是8個(gè)連續(xù)數(shù)字皆可分成兩組平方之和相等的數(shù)字。請(qǐng)問(wèn)伊麗莎白的推論是否正確?