奧數(shù) > 小學(xué)資源庫 > 教案 > 小學(xué)數(shù)學(xué)教案 > 五年級(jí)數(shù)學(xué)下冊(cè)教案 > 正文
2009-05-11 15:07:01 下載試卷 標(biāo)簽:五年級(jí) 教案 小數(shù)
最簡(jiǎn)分?jǐn)?shù)可以化成有限小數(shù)的規(guī)律
教學(xué)內(nèi)容:九年義務(wù)教育六年制小學(xué)數(shù)學(xué)實(shí)驗(yàn)課本第十冊(cè)91-92頁《分?jǐn)?shù)化成有限小數(shù)的規(guī)律》
教學(xué)目標(biāo):
1、理解掌握最簡(jiǎn)分?jǐn)?shù)能否化成有限小數(shù)的規(guī)律,并能運(yùn)用這一規(guī)律正確地判斷一個(gè)分?jǐn)?shù)能否化成有限小數(shù);
2、讓學(xué)生充分經(jīng)歷“猜想——驗(yàn)證——探索——再驗(yàn)證”的過程,使學(xué)生初步感受科學(xué)研究的一般方法,訓(xùn)練學(xué)生思維的嚴(yán)謹(jǐn)性;
3、在“猜想——探索”的過程中,培養(yǎng)學(xué)生的猜想、觀察、分析、概括及表達(dá)能力和小組合作精神。
教學(xué)重點(diǎn):讓學(xué)生充分經(jīng)歷“猜想——探索”的過程,使他們得出分?jǐn)?shù)能否化成有限小數(shù)的規(guī)律。
教學(xué)難點(diǎn):探究、理解一個(gè)分?jǐn)?shù)能否化成有限小數(shù)。
教具學(xué)具:多媒體課件
教學(xué)過程:
一、提出問題
1、說出下列各數(shù)各有哪些不同的質(zhì)因數(shù)?
103512815214022125
2、分?jǐn)?shù)化成小數(shù),一般用什么方法?
3、提出問題。
。1)、動(dòng)手操作
同學(xué)們,我們已經(jīng)學(xué)習(xí)了分?jǐn)?shù)化小數(shù)的方法。看這里有許多分?jǐn)?shù)。媒體出示分?jǐn)?shù):
1/2、1/3、2/5、5/6、5/8、2/9、7/10、9/14、8/15、4/25、3/40、7/30
媒體出示要求:(同桌合作)
把分?jǐn)?shù)化成小數(shù)(借助計(jì)算器)
根據(jù)計(jì)算的結(jié)果分類。
。2)、反饋。
誰愿意來說一說通過計(jì)算,你們把這些分?jǐn)?shù)分為幾類?
又是怎樣分的?
在學(xué)生回答后,媒體出示分得的結(jié)果。
能化成有限小數(shù)不能化成有限小數(shù)
1/22/55/81/35/62/9
7/104/253/409/148/157/30
左邊這些分?jǐn)?shù)能化成有限小數(shù),而右邊這些小數(shù)卻不能化成有限小數(shù)。那么你能否一眼就看出怎么樣的分?jǐn)?shù)能化成有限小數(shù),怎么樣的分?jǐn)?shù)不能化成有限小數(shù)呢?
這節(jié)課我們就來研究能化成有限小數(shù)的分?jǐn)?shù)的規(guī)律。
。ò鍟n題:能化成有限小數(shù)的分?jǐn)?shù)的規(guī)律)
二、大膽猜想:
這兩個(gè)部分的分?jǐn)?shù)有什么相同的地方?有什么不同的地方?
提出問題:仔細(xì)觀察這些分?jǐn)?shù),你覺得一個(gè)分?jǐn)?shù)能否化成有限小數(shù)與什么有關(guān)?
學(xué)生可能提出一下三條:
(1)一個(gè)分?jǐn)?shù)能不能化成有限小數(shù)與分?jǐn)?shù)的分子有關(guān)。
(2)一個(gè)分?jǐn)?shù)能不能化成有限小數(shù)與分?jǐn)?shù)的分母有關(guān)。
。3)一個(gè)分?jǐn)?shù)能不能化成有限小數(shù)與分?jǐn)?shù)的分子、分母都有關(guān)。
三、探索規(guī)律:
第一次探索:
1、提出問題:有的同學(xué)認(rèn)為一個(gè)分?jǐn)?shù)能不能化成有限小數(shù)與分子有關(guān)。你們?cè)鯓诱J(rèn)為?
2、反饋:你們?cè)鯓诱J(rèn)為?
學(xué)生舉例說明:1/2和1/3、2/5和2/9、5/8和5/6這三組分?jǐn)?shù)每一組中分子相同,但是有的能化成有限小數(shù),有的不能化成有限小數(shù),所以一個(gè)分?jǐn)?shù)能不能化成有限小數(shù)與分子無關(guān)。
根據(jù)學(xué)生回答:媒體閃動(dòng)一下分?jǐn)?shù)1/2和1/3、2/5和2/9、5/8和5/6,
小結(jié):我們可以從1/2和1/3、2/5和2/9、5/8和5/6看出:一個(gè)分?jǐn)?shù)能不能化成有限小數(shù)與分子無關(guān)。
那么我提出的第三條:與分子分母都有關(guān),正確嗎?
第二次探索:
1、提出問題:有的同學(xué)認(rèn)為一個(gè)分?jǐn)?shù)能不能化成有限小數(shù)與分母有關(guān)。那能化成有限小數(shù)的分?jǐn)?shù)的分母有什么特征?
2、小組討論。
學(xué)生在小組討論中可能出現(xiàn)以下幾種情況:
。1)分母?jìng)(gè)位是0的分?jǐn)?shù)都能化成有限小數(shù)。
。2)分母是分子倍數(shù)的分?jǐn)?shù)能化成有限小數(shù)。
。3)分母是2和5的倍數(shù)的分?jǐn)?shù)一定能化成有限小數(shù)。
。4)能化成有限小數(shù)的分?jǐn)?shù)分母中只含有質(zhì)因數(shù)2和5。
3、在學(xué)生小組討論時(shí),教師巡視并參與,引導(dǎo)學(xué)生運(yùn)用舉例的方法進(jìn)行推理。
(1)7/30分母?jìng)(gè)位是0的分?jǐn)?shù)不能化成有限小數(shù)。
(2)有的同學(xué)認(rèn)為:分母是2或5的倍數(shù)的分?jǐn)?shù)能化成有限小數(shù)。
這個(gè)想法對(duì)嗎?為什么?
學(xué)生舉例說明:
5/8、7/10、4/25、3/40分母都是2或5的倍數(shù)能化成有限小數(shù);
5/6、9/14、8/15、7/30分母都是2或5的倍數(shù)不能化成有限小數(shù)。
得出結(jié)論:“分母是2或5的倍數(shù)的分?jǐn)?shù)一定能化成有限小數(shù)”是不正確的。
。3)剛才有的同學(xué)還認(rèn)為:能化成有限小數(shù)的分?jǐn)?shù)分母中只含有質(zhì)因數(shù)2和5。小組討論:這個(gè)結(jié)論對(duì)不對(duì)?為什么?
。4)反饋。
A、討論中引導(dǎo)學(xué)生把這些分?jǐn)?shù)的分母分解質(zhì)因數(shù)。
反饋時(shí),根據(jù)學(xué)生回答板書顯示:
5/82×2×25/62×3
7/102×59/142×7
4/255×58/153×5
3/402×2×2×57/302×3×5
引導(dǎo)學(xué)生得出結(jié)論:如果分母中除了2和5以外,不含有其他質(zhì)因數(shù),這個(gè)分?jǐn)?shù)就能化成有限小數(shù)。
分母中含有2和5以外的質(zhì)因數(shù),這個(gè)分?jǐn)?shù)就能化成有限小數(shù)。
生自己找?guī)讉(gè)分母中只含有質(zhì)因數(shù)2和5的分?jǐn)?shù),來驗(yàn)證自己的猜想。
出示:B、3/15中分母15分解質(zhì)因數(shù)15=3×5,分母中有質(zhì)因數(shù)3,但把他化成小數(shù)等于0.2是一個(gè)有限小數(shù)。
討論:這和我們剛才的結(jié)論不是矛盾了嗎?為什么?
通過討論得出:剛才我們討論的分?jǐn)?shù)都是最簡(jiǎn)分?jǐn)?shù),3/15不是最簡(jiǎn)分?jǐn)?shù),但是化簡(jiǎn)后等于1/5,分母中不含有2和5以外的質(zhì)因數(shù),所以能化成有限小數(shù)。
學(xué)生回答:這個(gè)分?jǐn)?shù)必須是最簡(jiǎn)分?jǐn)?shù)才符合這個(gè)規(guī)律。
。5)這就是能化成有限小數(shù)的分?jǐn)?shù)的規(guī)律,請(qǐng)大家看書,把這個(gè)規(guī)律填寫完整,并輕聲地讀兩遍。
一個(gè)()分?jǐn)?shù),如果分母中除了()和()以外,不含其他的質(zhì)因數(shù),這個(gè)分?jǐn)?shù)就能化成()小數(shù);如果分母中含有()和()以外的質(zhì)因數(shù),這個(gè)分?jǐn)?shù)就不能化成()小數(shù)。、
三、運(yùn)用規(guī)律
1、根據(jù)剛才的發(fā)現(xiàn),想一想判斷一個(gè)分?jǐn)?shù)能不能化成有限小數(shù)要先想什么?再想什么?同桌互相說一說。
哪位同學(xué)愿意來說一說。
學(xué)生回答:先想這個(gè)分?jǐn)?shù)是不是最簡(jiǎn)分?jǐn)?shù)?再想分母中是否含有2和5以外的質(zhì)因數(shù)?
2、練一練
判別下面各分?jǐn)?shù),哪些能化成有限小數(shù),哪些不能化成有限小數(shù)?為什么?
3/2027/1815/84/1132/258/97/283/169/40
29/1214/5
小組討論:通過剛才的判斷,你又發(fā)現(xiàn)了什么?
學(xué)生回答:我們只要先看它是不是最簡(jiǎn)分?jǐn)?shù),再分析分母中質(zhì)因數(shù)的情況
3、判斷題。
。1)一個(gè)分?jǐn)?shù),如果分母中除了2和5以外,還含有其他的質(zhì)因數(shù),這個(gè)分?jǐn)?shù)就不能化成有限小數(shù)。()
。2)一個(gè)最簡(jiǎn)分?jǐn)?shù),如果分母中含有質(zhì)因數(shù)2和5,這個(gè)分?jǐn)?shù)一定能化成有限小數(shù)。()
(3)一個(gè)最簡(jiǎn)分?jǐn)?shù),如果分母有約數(shù)3,一定不能化成有限小數(shù)。()
。4)一個(gè)最簡(jiǎn)分?jǐn)?shù),如果分母有約數(shù)7,一定不能化成有限小數(shù)。()
第(1)(2)是錯(cuò)誤的,要求學(xué)生說說是怎樣想的?怎樣說就對(duì)了。
四、課堂小結(jié)
回顧一下,這節(jié)課我們探索了什么?你有那些收獲?
五、拓展延伸:
剛才我們探索得到了分?jǐn)?shù)化小數(shù)時(shí)的一個(gè)規(guī)律。
其實(shí)在分?jǐn)?shù)化小數(shù)時(shí),還有許多規(guī)律。
觀察下列各式,按規(guī)律填空。
1/2=0.5(2)1/5=0.2(5)
3/4=0.75(2×2)4/25=0.16(5×5)
7/8=0.875(2×2×2)9/125=0.072(5×5×5)
5/16能化成()位小數(shù)8/625能化成()位小數(shù)
。2×2×2×2)(5×5×5×5)
先獨(dú)立思考,再小組討論。
學(xué)生匯報(bào)時(shí)說出規(guī)律:分母中只有1個(gè)質(zhì)因數(shù)2(或5)化成一位小數(shù),只有2個(gè)質(zhì)因數(shù)(2或5)化成兩位小數(shù),……只有4個(gè)質(zhì)因數(shù)2(或5)所以能化成四位小數(shù)。
因?yàn)?/16分母中有4個(gè)質(zhì)因數(shù)2,所以它能化成四位小數(shù)
因?yàn)?/125分母中有4個(gè)質(zhì)因數(shù)5,所以它能化成四位小數(shù)。
用計(jì)算器算一算對(duì)嗎?
學(xué)生通過計(jì)算器證明答案是正確的。
教師小結(jié):在數(shù)學(xué)王國中還有許許多多的規(guī)律,我們只要認(rèn)真學(xué)習(xí),不斷探索,一定能發(fā)現(xiàn)更多更有趣的規(guī)律。
歡迎掃描二維碼
關(guān)注奧數(shù)網(wǎng)微信
ID:aoshu_2003
歡迎掃描二維碼
關(guān)注中考網(wǎng)微信
ID:zhongkao_com