日本精品一区,蜜桃六月天综合网,欧美99,草草影院ccyycom

奧數(shù)網(wǎng)
全國站
您現(xiàn)在的位置:奧數(shù) > 小學(xué)數(shù)學(xué)網(wǎng) > 數(shù)學(xué)智力題 > 正文

數(shù)學(xué)邏輯推理題5(硬幣問題)

來源:網(wǎng)絡(luò) 2009-05-15 14:08:14

智能內(nèi)容

  在一張長方形的桌面上放了n個(gè)一樣大小的圓形硬幣。這些硬幣中可能有一些不完全在桌面內(nèi),也可能有一些彼此重疊;當(dāng)再多放一個(gè)硬幣而它的圓心在桌面內(nèi)時(shí),新放的硬幣便必定與原先某些硬幣重疊。請證明整個(gè)桌面可以用4n個(gè)硬幣完全覆蓋。

  【解答】要想讓新放的硬幣不與原先的硬幣重疊,兩個(gè)硬幣的圓心距必須大于直徑。也就是說,對于桌面上任意一點(diǎn),到最近的圓心的距離都小于2,所以,整個(gè)桌面可以用n個(gè)半徑為2的硬幣覆蓋。

  把桌面和硬幣的尺度都縮小一倍,那么,長、寬各是原桌面一半的小桌面,就可以用n個(gè)半徑為1的硬幣覆蓋。那么,把原來的桌子分割成相等的4塊小桌子,那么每塊小桌子都可以用n個(gè)半徑為1的硬幣覆蓋,因此,整個(gè)桌面就可以用4n個(gè)半徑為1的硬幣覆蓋。

 

廣告合作請加微信:17310823356

京ICP備09042963號-15 京公網(wǎng)安備:11010802027854

違法和不良信息舉報(bào)電話:010-56762110 舉報(bào)郵箱:wzjubao@tal.com

奧數(shù)版權(quán)所有Copyright2005-2021 . All Rights Reserved.