數(shù)學邏輯推理題17(多少人及格)
來源:本站原創(chuàng) 2009-05-18 11:23:13
100個人回答五道試題,有81人答對第一題,91人答對第二題,85人答對第三題,79人答對第四題,74人答對第五題,答對三道題或三道題以上的人算及格, 那么,在這100人中,至少有( )人及格。
【解答】首先求解原題。每道題的答錯人數(shù)為(次序不重要):26,21,19,15,9
第3分布層:答錯3道題的最多人數(shù)為:(26+21+19+15+9)/3=30
第2分布層:答錯2道題的最多人數(shù)為:(21+19+15+9)/2=32
第1分布層:答錯1道題的最多人數(shù)為:(19+15+9)/1=43
Max_3=Min(30, 32, 43)=30。因此答案為:100-30=70。
其實,因為26小于30,所以在求出第一分布層后,就可以判斷答案為70了。
要讓及格的人數(shù)最少,就要做到兩點:
1. 不及格的人答對的題目盡量多,這樣就減少了及格的人需要答對的題目的數(shù)量,也就只需要更少的及格的人
2. 每個及格的人答對的題目數(shù)盡量多,這樣也能減少及格的人數(shù)
由1得每個人都至少做對兩道題目
由2得要把剩余的210道題目分給其中的70人: 210/3 = 70,讓這70人全部題目都做對,而其它30人只做對了兩道題
也很容易給出一個具體的實現(xiàn)方案:
讓70人答對全部五道題,11人僅答對第一、二道題,10人僅答對第二、三道題,5人答對第三、四道題,4人僅答對第四、五道題
顯然稍有變動都會使及格的人數(shù)上升。所以最少及格人數(shù)就是70人!
相關(guān)文章
- 小學1-6年級作文素材大全
- 全國小學升初中語數(shù)英三科試題匯總
- 小學1-6年級數(shù)學天天練
- 小學1-6年級奧數(shù)類型例題講解整理匯總
- 小學1-6年級奧數(shù)練習題整理匯總
- 小學1-6年級奧數(shù)知識點匯總
- 小學1-6年級語數(shù)英教案匯總
- 小學語數(shù)英試題資料大全
- 小學1-6年級語數(shù)英期末試題整理匯總
- 小學1-6年級語數(shù)英期中試題整理匯總
- 小學1-6年語數(shù)英單元試題整理匯總