奧數(shù) > 小學資源庫 > 教案 > 小學數(shù)學教案 > 五年級數(shù)學下冊教案 > 正文
2009-10-07 09:24:17 下載試卷 標簽:五年級 倍數(shù) 約數(shù)倍數(shù) 教案
教材分析
約數(shù)和倍數(shù)的意義是在學生已經(jīng)學過整除知識的基礎上進行教學的,這部分內(nèi)容是后面學習質(zhì)數(shù)和合數(shù)、質(zhì)因數(shù)、分解質(zhì)因數(shù)、求最大公約數(shù)、求最小公倍數(shù)等知識必須具備的基礎知識,所以是本單元中最基本的概念.
教材在復習“整除”的基礎上概括出“整除”這個概念,然后引出約數(shù)和倍數(shù)的概念.在整數(shù)范圍內(nèi),除法算式可以分為整除和不能整除兩大類.引入了小數(shù)以后,除法算式又可以分除盡和除不盡兩大類.這里的除盡,不但包含了整除的情況,還包含了被除數(shù)、除數(shù)或商是有限小數(shù)的情況,所以在教學中要列舉各種有代表性的實例,讓學生通過對算式中被除數(shù)、除數(shù)與商各種不同情況的觀察、比較,使整除的概念從除盡的概念中分化出來.從而理解整除的意義,明白整除與除盡的關系.
學生學過約數(shù)和倍數(shù)的意義后往往把“倍數(shù)”和“幾倍”混同起來,所以教學時應通過對比練習,使學生悟出兩者的區(qū)別(可以說8是4的倍數(shù),也可以說8是4的2倍;但是不可以說0.8是0.4的倍數(shù),只能說0.8是0.2的2倍),從而進一步理解和掌握約數(shù)和倍數(shù)的本質(zhì).
教法建議
約數(shù)和倍數(shù)的意義是在學生已經(jīng)學過整除知識的基礎上進行教學的,這部分內(nèi)容是后面學習質(zhì)數(shù)和合數(shù)、質(zhì)因數(shù)、分解質(zhì)因數(shù)、求最大公約數(shù)、求最小公倍數(shù)等知識必須具備的基礎知識,是本單元中最基本的概念.
復習引入時,教師要通過新舊知識的聯(lián)系,抓住生長點, 對已掌握的“整除”的意義進行復習,通過觀察算式的特征和結(jié)果,首先將算式分為除盡和除不盡兩大類,然后再對算式中被除數(shù)、除數(shù)與商各種不同情況的觀察、比較,使整除的概念從除盡的概念中分化出來.從而理解整除的意義,明白整除與除盡的關系.
約數(shù)和倍數(shù)是建立在整除的基礎上的,所以教學求一個數(shù)的約數(shù)和倍數(shù)的時候,首先要利用整除式幫助學生理解除數(shù)和商是被除數(shù)的一對約數(shù),進而發(fā)現(xiàn)約數(shù)可以一對一對的找,在學生學會找約數(shù)的基礎上,教師可以給學生創(chuàng)設一個研討,發(fā)現(xiàn)約數(shù)特點的情景.學生掌握了約數(shù)的特點,更能提高找約數(shù)的能力.找倍數(shù)的方法學生很容易理解,難點是對一個數(shù)的倍數(shù)是無限的這個特點的認識,教師可以在練習中設計集合圈中加省略號和不加省略號兩種題目,讓學生通過對比討論加深認識.
教學設計示例
約數(shù)和倍數(shù)的意義
教學目標
1、掌握整除、約數(shù)、倍數(shù)的概念.
2、知道約數(shù)和倍數(shù)以整除為前提及約數(shù)和倍數(shù)相互依存的關系.
教學重點
1、建立整除、約數(shù)、倍數(shù)的概念.
2、理解約數(shù)、倍數(shù)相互依存的關系.
3、應用概念正確作出判斷.
教學難點
理解約數(shù)、倍數(shù)相互依存的關系.
教學步驟
一、鋪墊孕伏(課件演示:數(shù)的整除 下載)
1、口算
6÷5 15÷3 23÷7
1.2÷0.3 24÷2 31÷3
2、觀察算式和結(jié)果并將算式分類.
除 盡 |
除 不 盡 |
6÷5=1.2 15÷3=15 1.2÷0.3=4 24÷2=12 |
23÷7=3……2 31÷3=10……1 |
3、引導學生回憶:研究整數(shù)除法時,一個數(shù)除以另一個不為零的數(shù),商是整數(shù)而沒有余數(shù),我們就說第一個數(shù)能被第二個數(shù)整除.
4、尋找具有整除關系的算式.
板書: 15÷3=5 15能被3整除
5、分類
除 盡 |
除 不 盡 |
|
不能整除 |
整 除 |
|
6÷5=1.2 1.2÷0.3=4 |
15÷3=15 24÷2=12 |
23÷7=3……2 31÷3=10……1 |
二、探究新知
(一)進一步理解“整除”的意義.
1、整除所需的條件.
(1)分析: 24能被2整除,15能被3整除;
23不能被7整除,31不能被3整除;(商有余數(shù))
6不能被5整除;(商是小數(shù))
1.2不能被0.3整除;(被除數(shù)和除數(shù)都是小數(shù))
(2)引導學生明確:第一個數(shù)能被第二個數(shù)整除必須滿足三個條件:
a、被除數(shù)和除數(shù)(0除外)都是整數(shù);
b、商是整數(shù);
c、商后沒有余數(shù).
板書:整數(shù) 整數(shù) 整數(shù)(沒有余數(shù))
15÷3=5
2、用字母表示相除的兩個數(shù),理解整除的意義.
。1)討論:如果用字母a和b表示兩個數(shù)相除,那么必須滿足幾個條件才能說a能被b整除?
。ò鍟篴÷b)
學生明確:a和b都是整數(shù),除得的商正好是整數(shù)而沒有余數(shù),我們就說a能被b整除.
(板書:a能被b整除)
。2)繼續(xù)討論:在什么情況下才能說a能被b整除?(板書: b≠0)
學生明確:整數(shù)a除以整數(shù)b(b≠0),除得的商是整數(shù)而沒有余數(shù),我們就說a能被b整除(也可以說b能整除a).
3、反饋練習.
(1)下面的數(shù),哪一組的第一個數(shù)能被第二個數(shù)整除?
29和 3 36和12 1.2和 0.4
(2)判斷下面的說法是否正確,并說明理由.
a.36能被12整除.( )
b.19能被3整除.( )
c.3.2能被0.4整除.( )
d.0能被5整除.( )
e.29能整除29.( )
4、“整除”與“除盡”的聯(lián)系和區(qū)別.
討論:綜合以上所學知識討論,“整除”和“除盡”有什么聯(lián)系?又有什么區(qū)別?
(舉例說明)
(二)約數(shù)、倍數(shù)的意義
1、類推約數(shù)、倍數(shù)的意義.
。1)教師講解:15能被3整除,我們就說15是3的倍數(shù),3是15的約數(shù).
。2)學生口述:
24能被2整除,我們就說,24是2的倍數(shù),2是24的約數(shù).
10能被5整除,我們就說,10是5的倍數(shù),5是10的約數(shù).
a能被b整除,我們就說a是b的倍數(shù),b是a的約數(shù).
(3)討論:如果用字母a和b表示兩個整數(shù),在什么情況下才可以說a是b的倍數(shù),b是a的約數(shù)?(在數(shù)a能被數(shù)b整除的條件下)
(4)小結(jié):如果數(shù)a能被數(shù)b(b≠0)整除,a就叫做b的倍數(shù),b就叫做a的約數(shù)(或a的因數(shù)).
2、進一步理解約數(shù)、倍數(shù)的意義.
(1)整除是約數(shù)、倍數(shù)的前提.學生明確:約數(shù)和倍數(shù)必須以整除為前提,不能整除的兩個數(shù)就沒有的數(shù)和倍數(shù)的關系.
。2)約數(shù)和倍數(shù)相互依存的關系.
學生明確:約數(shù)和倍數(shù)是一對相互依存的概念,不能單獨存在.
。3)反饋練習:
A、下面各組數(shù)中,有約數(shù)和倍數(shù)關系的有哪些?
16和2 140和20 45和15
33和6 4和24 72和8
B、判斷下面說法是否正確.
a、8是2的倍數(shù),2是8的約數(shù).( )
b、6是倍數(shù),3是約數(shù).( )
c、30是5的倍數(shù).( )
d、4是歷的約數(shù)
歡迎掃描二維碼
關注奧數(shù)網(wǎng)微信
ID:aoshu_2003
歡迎掃描二維碼
關注中考網(wǎng)微信
ID:zhongkao_com