解應用題時,為了解題的方便,把問題分為不重復、不遺漏的有限情況,一一列舉出來加以分析、解決,最終達到解決整個問題的目的。這種分析、解決問題的方法叫做列舉法。列舉法也叫枚舉法或窮舉法。
用列舉法解應用題時,往往把題中的條件以列表的形式排列起來,有時也要畫圖。
例4 印刷工人在排印一本書的頁碼時共用1890個數(shù)碼,這本書有多少頁?(適于四年級程度)
解:(1)數(shù)碼一共有10個:0、1、2……8、9。0不能用于表示頁碼,所以頁碼是一位數(shù)的頁有9頁,用數(shù)碼9個。
。2)頁碼是兩位數(shù)的從第10頁到第99頁。因為99-9=90,所以,頁碼是兩位數(shù)的頁有90頁,用數(shù)碼:
2×90=180(個)
。3)還剩下的數(shù)碼:
1890-9-180=1701(個)
。4)因為頁碼是三位數(shù)的頁,每頁用3個數(shù)碼,100頁到999頁,999-99=900,而剩下的1701個數(shù)碼除以3時,商不足600,即商小于900。所以頁碼最高是3位數(shù),不必考慮是4位數(shù)了。往下要看1701個數(shù)碼可以排多少頁。
1701÷3=567(頁)
。5)這本書的頁數(shù):
9+90+567=666(頁)
答略。