日本精品一区,蜜桃六月天综合网,欧美99,草草影院ccyycom

奧數(shù)網(wǎng)
全國(guó)站

奧數(shù) > 小學(xué)資源庫(kù) > 奧數(shù)天天練 > 一年級(jí)奧數(shù)天天練 > 文章列表 > 正文

小學(xué)數(shù)學(xué)知識(shí)點(diǎn):典型應(yīng)用題(2)

2011-07-07 15:34:49      下載試卷

  解題關(guān)鍵及規(guī)律:

  同時(shí)同地相背而行:路程=速度和×時(shí)間。

  同時(shí)相向而行:相遇時(shí)間=速度和×時(shí)間

  同時(shí)同向而行(速度慢的在前,快的在后):追及時(shí)間=路程速度差。

  同時(shí)同地同向而行(速度慢的在后,快的在前):路程=速度差×時(shí)間。

  例甲在乙的后面28千米,兩人同時(shí)同向而行,甲每小時(shí)行16千米,乙每小時(shí)行9千米,甲幾小時(shí)追上乙?

  分析:甲每小時(shí)比乙多行(16-9)千米,也就是甲每小時(shí)可以追近乙(16-9)千米,這是速度差。

  已知甲在乙的后面28千米(追擊路程),28千米里包含著幾個(gè)(16-9)千米,也就是追擊所需要的時(shí)間。列式28÷(16-9)=4(小時(shí))

  (8)流水問(wèn)題:一般是研究船在“流水”中航行的問(wèn)題。它是行程問(wèn)題中比較特殊的一種類型,它也是一種和差問(wèn)題。它的特點(diǎn)主要是考慮水速在逆行和順行中的不同作用。

  船速:船在靜水中航行的速度。

  水速:水流動(dòng)的速度。

  順?biāo)俣龋捍樍骱叫械乃俣取?/p>

  逆水速度:船逆流航行的速度。

  順?biāo)?船速+水速

  逆速=船速-水速

  解題關(guān)鍵:因?yàn)轫樍魉俣仁谴倥c水速的和,逆流速度是船速與水速的差,所以流水問(wèn)題當(dāng)作和差問(wèn)題解答。解題時(shí)要以水流為線索。

  解題規(guī)律:船行速度=(順?biāo)俣?逆流速度)÷2

  流水速度=(順流速度逆流速度)÷2

  路程=順流速度×順流航行所需時(shí)間

  路程=逆流速度×逆流航行所需時(shí)間

  例一只輪船從甲地開(kāi)往乙地順?biāo)校啃r(shí)行28千米,到乙地后,又逆水航行,回到甲地。逆水比順?biāo)嘈?小時(shí),已知水速每小時(shí)4千米。求甲乙兩地相距多少千米?

  分析:此題必須先知道順?biāo)乃俣群晚標(biāo)枰臅r(shí)間,或者逆水速度和逆水的時(shí)間。已知順?biāo)俣群退魉俣龋虼瞬浑y算出逆水的速度,但順?biāo)玫臅r(shí)間,逆水所用的時(shí)間不知道,只知道順?biāo)饶嫠儆?小時(shí),抓住這一點(diǎn),就可以就能算出順?biāo)畯募椎氐揭业氐乃玫臅r(shí)間,這樣就能算出甲乙兩地的路程。列式為284×2=20(千米)20×2=40(千米)40÷(4×2)=5(小時(shí))28×5=140(千米)。

 。9)還原問(wèn)題:已知某未知數(shù),經(jīng)過(guò)一定的四則運(yùn)算后所得的結(jié)果,求這個(gè)未知數(shù)的應(yīng)用題,我們叫做還原問(wèn)題。

  解題關(guān)鍵:要弄清每一步變化與未知數(shù)的關(guān)系。

  解題規(guī)律:從最后結(jié)果出發(fā),采用與原題中相反的運(yùn)算(逆運(yùn)算)方法,逐步推導(dǎo)出原數(shù)。

  根據(jù)原題的運(yùn)算順序列出數(shù)量關(guān)系,然后采用逆運(yùn)算的方法計(jì)算推導(dǎo)出原數(shù)。

  解答還原問(wèn)題時(shí)注意觀察運(yùn)算的順序。若需要先算加減法,后算乘除法時(shí)別忘記寫(xiě)括號(hào)。

  例某小學(xué)三年級(jí)四個(gè)班共有學(xué)生168人,如果四班調(diào)3人到三班,三班調(diào)6人到二班,二班調(diào)6人到一班,一班調(diào)2人到四班,則四個(gè)班的人數(shù)相等,四個(gè)班原有學(xué)生多少人?

  分析:當(dāng)四個(gè)班人數(shù)相等時(shí),應(yīng)為168÷4,以四班為例,它調(diào)給三班3人,又從一班調(diào)入2人,所以四班原有的人數(shù)減去3再加上2等于平均數(shù)。四班原有人數(shù)列式為168÷4-2+3=43(人)

  一班原有人數(shù)列式為168÷4-6+2=38(人);二班原有人數(shù)列式為168÷4-6+6=42(人)三班原有人數(shù)列式為168÷4-3+6=45(人)。

 。10)植樹(shù)問(wèn)題:這類應(yīng)用題是以“植樹(shù)”為內(nèi)容。凡是研究總路程、株距、段數(shù)、棵樹(shù)四種數(shù)量關(guān)系的應(yīng)用題,叫做植樹(shù)問(wèn)題。

  解題關(guān)鍵:解答植樹(shù)問(wèn)題首先要判斷地形,分清是否封閉圖形,從而確定是沿線段植樹(shù)還是沿周長(zhǎng)植樹(shù),然后按基本公式進(jìn)行計(jì)算。

  解題規(guī)律:沿線段植樹(shù)

  棵樹(shù)=段數(shù)+1棵樹(shù)=總路程÷株距+1

  株距=總路程÷(棵樹(shù)-1)總路程=株距×(棵樹(shù)-1)

  沿周長(zhǎng)植樹(shù)

  棵樹(shù)=總路程÷株距

  株距=總路程÷棵樹(shù)

  總路程=株距×棵樹(shù)

  例沿公路一旁埋電線桿301根,每相鄰的兩根的間距是50米。后來(lái)全部改裝,只埋了201根。求改裝后每相鄰兩根的間距。

  分析:本題是沿線段埋電線桿,要把電線桿的根數(shù)減掉一。列式為50×(301-1)÷(201-1)=75(米)

 。11)盈虧問(wèn)題:是在等分除法的基礎(chǔ)上發(fā)展起來(lái)的。他的特點(diǎn)是把一定數(shù)量的物品,平均分配給一定數(shù)量的人,在兩次分配中,一次有余,一次不足(或兩次都有余),或兩次都不足),已知所余和不足的數(shù)量,求物品適量和參加分配人數(shù)的問(wèn)題,叫做盈虧問(wèn)題。

  解題關(guān)鍵:盈虧問(wèn)題的解法要點(diǎn)是先求兩次分配中分配者沒(méi)份所得物品數(shù)量的差,再求兩次分配中各次共分物品的差(也稱總差額),用前一個(gè)差去除后一個(gè)差,就得到分配者的數(shù),進(jìn)而再求得物品數(shù)。

  解題規(guī)律:總差額÷每人差額=人數(shù)

  總差額的求法可以分為以下四種情況:

  第一次多余,第二次不足,總差額=多余+不足

  第一次正好,第二次多余或不足,總差額=多余或不足

  第一次多余,第二次也多余,總差額=大多余-小多余

  第一次不足,第二次也不足,總差額=大不足-小不足

  例參加美術(shù)小組的同學(xué),每個(gè)人分的相同的支數(shù)的色筆,如果小組10人,則多25支,如果小組有12人,色筆多余5支。求每人分得幾支?共有多少支色鉛筆?

  分析:每個(gè)同學(xué)分到的色筆相等。這個(gè)活動(dòng)小組有12人,比10人多2人,而色筆多出了(25-5)=20支,2個(gè)人多出20支,一個(gè)人分得10支。列式為(25-5)÷(12-10)=10(支)10×12+5=125(支)。

  (12)年齡問(wèn)題:將差為一定值的兩個(gè)數(shù)作為題中的一個(gè)條件,這種應(yīng)用題被稱為“年齡問(wèn)題”。

  解題關(guān)鍵:年齡問(wèn)題與和差、和倍、差倍問(wèn)題類似,主要特點(diǎn)是隨著時(shí)間的變化,年歲不斷增長(zhǎng),但大小兩個(gè)不同年齡的差是不會(huì)改變的,因此,年齡問(wèn)題是一種“差不變”的問(wèn)題,解題時(shí),要善于利用差不變的特點(diǎn)。

  例父親48歲,兒子21歲。問(wèn)幾年前父親的年齡是兒子的4倍?

  分析:父子的年齡差為48-21=27(歲)。由于幾年前父親年齡是兒子的4倍,可知父子年齡的倍數(shù)差是(4-1)倍。這樣可以算出幾年前父子的年齡,從而可以求出幾年前父親的年齡是兒子的4倍。列式為:21(48-21)÷(4-1)=12(年)

 。13)雞兔問(wèn)題:已知“雞兔”的總頭數(shù)和總腿數(shù)。求“雞”和“兔”各多少只的一類應(yīng)用題。通常稱為“雞兔問(wèn)題”又稱雞兔同籠問(wèn)題

  解題關(guān)鍵:解答雞兔問(wèn)題一般采用假設(shè)法,假設(shè)全是一種動(dòng)物(如全是“雞”或全是“兔”,然后根據(jù)出現(xiàn)的腿數(shù)差,可推算出某一種的頭數(shù)。

  解題規(guī)律:(總腿數(shù)-雞腿數(shù)×總頭數(shù))÷一只雞兔腿數(shù)的差=兔子只數(shù)

  兔子只數(shù)=(總腿數(shù)-2×總頭數(shù))÷2

  如果假設(shè)全是兔子,可以有下面的式子:

  雞的只數(shù)=(4×總頭數(shù)-總腿數(shù))÷2

  兔的頭數(shù)=總頭數(shù)-雞的只數(shù)

  例雞兔同籠共50個(gè)頭,170條腿。問(wèn)雞兔各有多少只?

  兔子只數(shù)(170-2×50)÷2=35(只)

  雞的只數(shù)50-35=15(只)

來(lái)源:奧數(shù)網(wǎng)整理 作者:奧數(shù)網(wǎng)編輯

      歡迎訪問(wèn)奧數(shù)網(wǎng),您還可以在這里獲取百萬(wàn)真題,2023小升初我們一路相伴。>>[點(diǎn)擊查看]

分類

專題

類型

搜索

  • 歡迎掃描二維碼
    關(guān)注奧數(shù)網(wǎng)微信
    ID:aoshu_2003

  • 歡迎掃描二維碼
    關(guān)注中考網(wǎng)微信
    ID:zhongkao_com

本周新聞動(dòng)態(tài)

重點(diǎn)中學(xué)快訊

奧數(shù)關(guān)鍵詞

廣告合作請(qǐng)加微信:17310823356

廣告服務(wù) - 營(yíng)銷合作 - 友情鏈接 - 網(wǎng)站地圖 - 服務(wù)條款 - 誠(chéng)聘英才 - 問(wèn)題反饋 - 手機(jī)版

京ICP備09042963號(hào)-15 京公網(wǎng)安備 11010802027854號(hào)

違法和不良信息舉報(bào)電話: 010-56762110 舉報(bào)郵箱:wzjubao@tal.com

奧數(shù)版權(quán)所有Copyright@2005-2021 . All Rights Reserved.