1、下面是按規(guī)律排列的一串?dāng)?shù),問其中的第1995項是多少?
解答:2、5、8、11、14、……。 從規(guī)律看出:這是一個等差數(shù)列,且首項是2,公差是3, 這樣第1995項=2+3×(1995-1)=5984
2、在從1開始的自然數(shù)中,第100個不能被3除盡的數(shù)是多少?
解答:我們發(fā)現(xiàn):1、2、3、4、5、6、7、……中,從1開始每三個數(shù)一組,每組前2個不能被3除盡,2個一組,100個就有100÷2=50組,每組3個數(shù),共有50×3=150,那么第100個不能被3除盡的數(shù)就是150-1=149.
3、把1988表示成28個連續(xù)偶數(shù)的和,那么其中最大的那個偶數(shù)是多少?.
解答:28個偶數(shù)成14組,對稱的2個數(shù)是一組,即最小數(shù)和最大數(shù)是一組,每組和為: 1988÷14=142,最小數(shù)與最大數(shù)相差28-1=27個公差,即相差2×27=54, 這樣轉(zhuǎn)化為和差問題,最大數(shù)為(142+54)÷2=98。
4、在大于1000的整數(shù)中,找出所有被34除后商與余數(shù)相等的數(shù),那么這些數(shù)的和是多少?
解答:因為34×28+28=35×28=980<1000,所以只有以下幾個數(shù):
34×29+29=35×29
34×30+30=35×30
34×31+31=35×31
34×32+32=35×32
34×33+33=35×33
以上數(shù)的和為35×(29+30+31+32+33)=5425
5、盒子里裝著分別寫有1、2、3、……134、135的紅色卡片各一張,從盒中任意摸出若干張卡片,并算出這若干張卡片上各數(shù)的和除以17的余數(shù),再把這個余數(shù)寫在另一張黃色的卡片上放回盒內(nèi),經(jīng)過若干次這樣的操作后,盒內(nèi)還剩下兩張紅色卡片和一張黃色卡片,已知這兩張紅色的卡片上寫的數(shù)分別是19和97,求那張黃色卡片上所寫的數(shù)。
解答:因為每次若干個數(shù),進(jìn)行了若干次,所以比較難把握,不妨從整體考慮,之前先退到簡單的情況分析: 假設(shè)有2個數(shù)20和30,它們的和除以17得到黃卡片數(shù)為16,如果分開算分別為3和13,再把3和13求和除以17仍得黃卡片數(shù)16,也就是說不管幾個數(shù)相加,總和除以17的余數(shù)不變,回到題目1+2+3+……+134+135=136×135÷2=9180,9180÷17=540, 135個數(shù)的和除以17的余數(shù)為0,而19+97=116,116÷17=6……14, 所以黃卡片的數(shù)是17-14=3。
6、下面的各算式是按規(guī)律排列的:
1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,……, 那么其中第多少個算式的結(jié)果是1992?
解答:先找出規(guī)律: 每個式子由2個數(shù)相加,第一個數(shù)是1、2、3、4的循環(huán),第二個數(shù)是從1開始的連續(xù)奇數(shù)。 因為1992是偶數(shù),2個加數(shù)中第二個一定是奇數(shù),所以第一個必為奇數(shù),所以是1或3, 如果是1:那么第二個數(shù)為1992-1=1991,1991是第(1991+1)÷2=996項,而數(shù)字1始終是奇數(shù)項,兩者不符, 所以這個算式是3+1989=1992,是(1989+1)÷2=995個算式。
7、如圖,數(shù)表中的上、下兩行都是等差數(shù)列,那么同一列中兩個數(shù)的差(大數(shù)減小數(shù))最小是多少?
解答:從左向右算它們的差分別為:999、992、985、……、12、5。 從右向左算它們的差分別為:1332、1325、1318、……、9、2, 所以最小差為2。
8、有19個算式:
那么第19個等式左、右兩邊的結(jié)果是多少?
解答:因為左、右兩邊是相等,不妨只考慮左邊的情況,解決2個問題: 前18個式子用去了多少個數(shù)? 各式用數(shù)分別為5、7、9、……、第18個用了5+2×17=39個, 5+7+9+……+39=396,所以第19個式子從397開始計算; 第19個式子有幾個數(shù)相加? 各式左邊用數(shù)分別為3、4、5、……、第19個應(yīng)該是3+1×18=21個, 所以第19個式子結(jié)果是397+398+399+……+417=8547。
9、已知兩列數(shù): 2、5、8、11、……、2+(200-1)×3; 5、9、13、17、……、5+(200-1)×4。它們都是200項,問這兩列數(shù)中相同的項數(shù)共有多少對?
解答:易知第一個這樣的數(shù)為5,注意在第一個數(shù)列中,公差為3,第二個數(shù)列中公差為4,也就是說,第二對數(shù)減5即是3的倍數(shù)又是4的倍數(shù),這樣所求轉(zhuǎn)換為求以5為首項,公差為12的等差數(shù)的項數(shù),5、17、29、……, 由于第一個數(shù)列最大為2+(200-1)×3=599; 第二數(shù)列最大為5+(200-1)×4=801。新數(shù)列最大不能超過599,又因為5+12×49=593,5+12×50=605, 所以共有50對。
10、如圖,有一個邊長為1米的下三角形,在每條邊上從頂點(diǎn)開始,每隔2厘米取一個點(diǎn),然后以這些點(diǎn)為端點(diǎn),作平行線將大正三角形分割成許多邊長為2厘米的小正三角形。求⑴邊長為2厘米的小正三角形的個數(shù),⑵所作平行線段的總長度。
解答:⑴ 從上數(shù)到下,共有100÷2=50行, 第一行1個,第二行3個,第三行5個,……,最后一行99個, 所以共有(1+99)×50÷2=2500個; ⑵所作平行線段有3個方向,而且相同, 水平方向共作了49條, 第一條2厘米,第二條4厘米,第三條6厘米,……, 最后一條98厘米, 所以共長(2+98)×49÷2×3=7350厘米。
11、某工廠11月份工作忙,星期日不休息,而且從第一天開始,每天都從總廠陸續(xù)派相同人數(shù)的工人到分廠工作,直到月底,總廠還剩工人240人。如果月底統(tǒng)計總廠工人的工作量是8070個工作日(一人工作一天為1個工作日),且無人缺勤,那么,這月由總廠派到分廠工作的工人共多少人?
解答:11月份有30天。 由題意可知,總廠人數(shù)每天在減少,最后為240人,且每天人數(shù)構(gòu)成等差數(shù)列,由等差數(shù)列的性質(zhì)可知,第一天和最后一天人數(shù)的總和相當(dāng)于8070÷15=538 也就是說第一天有工人538-240=298人,每天派出(298-240)÷(30-1)=2人, 所以全月共派出2*30=60人。
12、小明讀一本英語書,第一次讀時,第一天讀35頁,以后每天都比前一天多讀5頁,結(jié)果最后一天只讀了35頁便讀完了;第二次讀時,第一天讀45頁,以后每天都比前一天多讀5頁,結(jié)果最后一天只需讀40頁就可以讀完,問這本書有多少頁?
解答:第一方案:35、40、45、50、55、……35 第二方案:45、50、55、60、65、……40 二次方案調(diào)整如下: 第一方案:40、45、50、55、……35+35(第一天放到最后惶熘腥ィ?/P>第二方案:40、45、50、55、……(最后一天放到第一天) 這樣第二方案一定是40、45、50、55、60、65、70,共385頁。
13、7個小隊共種樹100棵,各小隊種的查數(shù)都不相同,其中種樹最多的小隊種了18棵,種樹最少的小隊最少種了多少棵?
解答:由已知得,其它6個小隊共種了100-18=82棵, 為了使釕俚男《又值氖髟繳僭膠茫?敲戳?個應(yīng)該越多越好,有: 17+16+15+14+13=75棵, 所以最少的小隊最少要種82-75=7棵。
14、將14個互不相同的自然數(shù),從小到大依次排成一列,已知它們的總和是170,如果去掉最大數(shù)和最小數(shù),那么剩下的總和是150,在原來排成的次序中,第二個數(shù)是多少?
解答:最大與最小數(shù)的和為170-150=20,所以最大數(shù)最大為20-1=19, 當(dāng)最大為19時,有19+18+17+16+15+14+13+12+11+10+9+8+7+1=170, 當(dāng)最大為18時,有18+17+16+15+14+13+12+11+10+9+8+7+6+2=158, 所以最大數(shù)為19時,有第2個數(shù)為7。