奧數(shù) > 小學(xué)試題庫(kù) > 單元測(cè)試 > 數(shù)學(xué)單元測(cè)試 > 五年級(jí)數(shù)學(xué)單元測(cè)試上冊(cè) > 正文
2008-05-07 13:56:59
3×5+1=16.
對(duì)16施行變換得 16÷2=8.
將這種變換繼續(xù)下去,有
8÷2=4, 4÷2=2,
2÷2=1, 1×3+1=4,
4÷2=2, 2÷2=1,
……
有趣的是,對(duì)于數(shù)5,按照上面所要求的規(guī)則不斷變換下去,最終出現(xiàn)形如
4→2→1→4→2→1→……的重復(fù).
還可以以6為例按上述指定規(guī)則進(jìn)行變換,得到
6→3→10→5→16→8
4→2→1→4→2→1→……
再如18,
18→9→28→14→7→22→
11→34→17→52→26→13→
40→20→10→5→16→8→
我們發(fā)現(xiàn)在這種指定變換下,無(wú)論開(kāi)始是哪個(gè)自然數(shù),最終總得到形如
4→2→1→4→2→1的循環(huán)、重復(fù).
遺憾的是我們不能僅憑列舉若干自然數(shù),就斷定對(duì)任何自然數(shù)n都具備這種性質(zhì)。事實(shí)上,到目前為止,還沒(méi)有誰(shuí)能證明這一點(diǎn)。
在競(jìng)賽中我們會(huì)遇到一些類(lèi)似的變換,有時(shí)候是對(duì)一個(gè)數(shù)連續(xù)進(jìn)行某種指定變換,有時(shí)候是對(duì)一組數(shù)連續(xù)進(jìn)行某種指定變換。在紛亂多樣的變化中,卻隱藏著某種規(guī)律,而我們解決這些問(wèn)題的關(guān)鍵,就在于透過(guò)表面現(xiàn)象,從“萬(wàn)變”中揭示出“不變”的數(shù)量關(guān)系。
例1 對(duì)任意兩個(gè)不同的自然數(shù),將其中較大的數(shù)換成這兩數(shù)之差,稱(chēng)為一次變換。如對(duì)18和42可進(jìn)行這樣的連續(xù)變換:
18,42→18,24→18,6→12,6→6,6。
直到兩數(shù)相同為止。問(wèn):對(duì)12345和54321進(jìn)行這樣的連續(xù)變換,最后得到的兩個(gè)相同的數(shù)是幾?為什么?
解 如果兩個(gè)數(shù)的最大公約數(shù)是a,那么這兩個(gè)數(shù)之差與這兩個(gè)數(shù)中的任何一個(gè)數(shù)的最大公約數(shù)也是a。因此在每次變換的過(guò)程中,所得兩數(shù)的最大公約數(shù)始終不變,所以最后得到的兩個(gè)相同的數(shù)就是它們的最大公約數(shù)。因?yàn)?2345和54321的最大約數(shù)是3,所以最后得到的兩個(gè)相同的數(shù)是3。
說(shuō)明 這個(gè)變換的過(guò)程實(shí)際上就是求兩數(shù)最大公約數(shù)的輾轉(zhuǎn)相除法。
例2 在圖1中,對(duì)任意相鄰的上下或左右兩格中的數(shù)字同時(shí)加1或減1,這算作一次變換。經(jīng)過(guò)若干次變換后,圖1變?yōu)閳D2。問(wèn):圖2中A格中的數(shù)字是幾?
解 每次變換都是在相鄰的兩格,我們將相鄰的兩格染上不同的顏色(如圖3)。因?yàn)槊看巫儞Q總是一個(gè)黑格與一個(gè)白格的數(shù)字同時(shí)加上或減1,所以所有黑格內(nèi)的數(shù)字之和與所有白格內(nèi)數(shù)字之和的差保持不變。因?yàn)閳D1的這個(gè)差是13,所以圖2的這個(gè)差也是13。由(A+12)-12=13得A=13。
例3 黑板上寫(xiě)著三個(gè)整數(shù),任意擦去其中一個(gè),將它改寫(xiě)成為其它兩數(shù)之和減1,這樣繼續(xù)下去,最后得到3,1997,1999,問(wèn)原來(lái)的三個(gè)數(shù)能否是2,2,2?
解 答案是否定的。
注意到2,2,2按照題設(shè)中的方式首先變換為2,2,3,再變換下去必定其中兩個(gè)為偶數(shù),一個(gè)為奇數(shù)(數(shù)值可以改變,但奇偶性不變)。但3,1997,1999是三個(gè)奇數(shù),所以2,2,2永遠(yuǎn)不會(huì)按照所述方式變?yōu)?,1997,1999。
想想練練
1.黑板上寫(xiě)著1~15共15個(gè)數(shù),每次任意擦去兩個(gè)數(shù),再寫(xiě)上這兩個(gè)數(shù)的和減1。例如,擦掉5和11,要寫(xiě)上15。經(jīng)過(guò)若干次后,黑板上就會(huì)剩下一個(gè)數(shù),這個(gè)數(shù)是幾?
2.在黑板上任意寫(xiě)一個(gè)自然數(shù),然后用與這個(gè)自然數(shù)互質(zhì)并且大于1的最小自然數(shù)替換這個(gè)數(shù),稱(chēng)為一次變換。問(wèn)最多經(jīng)過(guò)多少次變換,黑板上就會(huì)出現(xiàn)2?
3.口袋里裝有101張小紙片,上面分別寫(xiě)著1~101。每次從袋中任意摸出5張小紙片,然后算出這5張小紙片上各數(shù)的和,再將這個(gè)和的后兩位數(shù)寫(xiě)在一張新紙片上放入袋中。經(jīng)過(guò)若干次這樣做后,袋中還剩下一張紙片,這張紙片上的數(shù)是幾?
4.在一個(gè)圓上標(biāo)出一些數(shù):第一次先把圓周二等分,在兩個(gè)分點(diǎn)分別標(biāo)上2和4。第二次把兩段半弧分別二等分,在分點(diǎn)標(biāo)上相鄰兩數(shù)的平均數(shù)3(圖4)。第三次把四段弧再分別二等分,在四個(gè)分點(diǎn)分別標(biāo)上相鄰兩分點(diǎn)兩數(shù)的平均數(shù)。如此下去,當(dāng)?shù)?次標(biāo)完后,圓周上所有標(biāo)出的數(shù)的總和是多少?
歡迎掃描二維碼
關(guān)注奧數(shù)網(wǎng)微信
ID:aoshu_2003
歡迎掃描二維碼
關(guān)注中考網(wǎng)微信
ID:zhongkao_com