日本精品一区,蜜桃六月天综合网,欧美99,草草影院ccyycom

奧數(shù)網(wǎng)
全國站
您現(xiàn)在的位置:奧數(shù) > 家庭教育 > 學(xué)習(xí)方法 > 正文

小學(xué)奧數(shù)理論知識速查手冊二

來源:網(wǎng)絡(luò) 文章作者:匿名 2009-02-11 10:48:49

  11.定義新運算

  基本概念:定義一種新的運算符號,這個新的運算符號包含有多種基本(混合)運算。

  基本思路:嚴(yán)格按照新定義的運算規(guī)則,把已知的數(shù)代入,轉(zhuǎn)化為加減乘除的運算,然后按照基本運算過程、規(guī)律進(jìn)行運算。

  關(guān)鍵問題:正確理解定義的運算符號的意義。

  注意事項:①新的運算不一定符合運算規(guī)律,特別注意運算順序。

 、诿總新定義的運算符號只能在本題中使用。

  12.?dāng)?shù)列求和

  等差數(shù)列:在一列數(shù)中,任意相鄰兩個數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列。

  基本概念:首項:等差數(shù)列的第一個數(shù),一般用a1表示;

  項數(shù):等差數(shù)列的所有數(shù)的個數(shù),一般用n表示;

  公差:數(shù)列中任意相鄰兩個數(shù)的差,一般用d表示;

  通項:表示數(shù)列中每一個數(shù)的公式,一般用an表示;

  數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用Sn表示.

  基本思路:等差數(shù)列中涉及五個量:a1,an,d,n,sn,,通項公式中涉及四個量,如果己知其中三個,就可求出第四個;求和公式中涉及四個量,如果己知其中三個,就可以求這第四個。

  基本公式:通項公式:an=a1+(n-1)d;

  通項=首項+(項數(shù)一1)×公差;

  數(shù)列和公式:sn,=(a1+an)×n÷2;

  數(shù)列和=(首項+末項)×項數(shù)÷2;

  項數(shù)公式:n=(an+a1)÷d+1;

  項數(shù)=(末項-首項)÷公差+1;

  公差公式:d=(an-a1))÷(n-1);

  公差=(末項-首項)÷(項數(shù)-1);

  關(guān)鍵問題:確定已知量和未知量,確定使用的公式;

  13.二進(jìn)制及其應(yīng)用

  十進(jìn)制:用0~9十個數(shù)字表示,逢10進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義,十位上的2表示20,百位上的2表示200。所以234=200+30+4=2×102+3×10+4。

  =An×10n-1+An-1×10n-2+An-2×10n-3+An-3×10n-4+An-4×10n-5+An-6×10n-7+……+A3×102+A2×101+A1×100

  注意:N0=1;N1=N(其中N是任意自然數(shù))

  二進(jìn)制:用0~1兩個數(shù)字表示,逢2進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義。

 。2)=An×2n-1+An-1×2n-2+An-2×2n-3+An-3×2n-4+An-4×2n-5+An-6×2n-7

  +……+A3×22+A2×21+A1×20

  注意:An不是0就是1。

  十進(jìn)制化成二進(jìn)制:

 、俑鶕(jù)二進(jìn)制滿2進(jìn)1的特點,用2連續(xù)去除這個數(shù),直到商為0,然后把每次所得的余數(shù)按自下而上依次寫出即可。

  ②先找出不大于該數(shù)的2的n次方,再求它們的差,再找不大于這個差的2的n次方,依此方法一直找到差為0,按照二進(jìn)制展開式特點即可寫出。

  14.加法乘法原理和幾何計數(shù)

  加法原理:如果完成一件任務(wù)有n類方法,在第一類方法中有m1種不同方法,在第二類方法中有m2種不同方法……,在第n類方法中有mn種不同方法,那么完成這件任務(wù)共有:m1+m2.......+mn種不同的方法。

  關(guān)鍵問題:確定工作的分類方法。

  基本特征:每一種方法都可完成任務(wù)。

  乘法原理:如果完成一件任務(wù)需要分成n個步驟進(jìn)行,做第1步有m1種方法,不管第1步用哪一種方法,第2步總有m2種方法……不管前面n-1步用哪種方法,第n步總有mn種方法,那么完成這件任務(wù)共有:m1×m2.......×mn種不同的方法。

  關(guān)鍵問題:確定工作的完成步驟。

  基本特征:每一步只能完成任務(wù)的一部分。

  直線:一點在直線或空間沿一定方向或相反方向運動,形成的軌跡。

  直線特點:沒有端點,沒有長度。

  線段:直線上任意兩點間的距離。這兩點叫端點。

  線段特點:有兩個端點,有長度。

  射線:把直線的一端無限延長。

  射線特點:只有一個端點;沒有長度。

 、贁(shù)線段規(guī)律:總數(shù)=1+2+3+…+(點數(shù)一1);

 、跀(shù)角規(guī)律=1+2+3+…+(射線數(shù)一1);

 、蹟(shù)長方形規(guī)律:個數(shù)=長的線段數(shù)×寬的線段數(shù):

 、軘(shù)長方形規(guī)律:個數(shù)=1×1+2×2+3×3+…+行數(shù)×列數(shù)

  15.質(zhì)數(shù)與合數(shù)

  質(zhì)數(shù):一個數(shù)除了1和它本身之外,沒有別的約數(shù),這個數(shù)叫做質(zhì)數(shù),也叫做素數(shù)。

  合數(shù):一個數(shù)除了1和它本身之外,還有別的約數(shù),這個數(shù)叫做合數(shù)。

  質(zhì)因數(shù):如果某個質(zhì)數(shù)是某個數(shù)的約數(shù),那么這個質(zhì)數(shù)叫做這個數(shù)的質(zhì)因數(shù)。

  分解質(zhì)因數(shù):把一個數(shù)用質(zhì)數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。通常用短除法分解質(zhì)因數(shù)。任何一個合數(shù)分解質(zhì)因數(shù)的結(jié)果是唯一的。

  分解質(zhì)因數(shù)的標(biāo)準(zhǔn)表示形式:N=,其中a1、a2、a3……an都是合數(shù)N的質(zhì)因數(shù),且a1<a2<a3<……<an。

  求約數(shù)個數(shù)的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)

  互質(zhì)數(shù):如果兩個數(shù)的最大公約數(shù)是1,這兩個數(shù)叫做互質(zhì)數(shù)。

  16.約數(shù)與倍數(shù)

  約數(shù)和倍數(shù):若整數(shù)a能夠被b整除,a叫做b的倍數(shù),b就叫做a的約數(shù)。

  公約數(shù):幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù);其中最大的一個,叫做這幾個數(shù)的最大公約數(shù)。

  最大公約數(shù)的性質(zhì):

  1、幾個數(shù)都除以它們的最大公約數(shù),所得的幾個商是互質(zhì)數(shù)。

  2、幾個數(shù)的最大公約數(shù)都是這幾個數(shù)的約數(shù)。

  3、幾個數(shù)的公約數(shù),都是這幾個數(shù)的最大公約數(shù)的約數(shù)。

  4、幾個數(shù)都乘以一個自然數(shù)m,所得的積的最大公約數(shù)等于這幾個數(shù)的最大公約數(shù)乘以m。

  例如:12的約數(shù)有1、2、3、4、6、12;

  18的約數(shù)有:1、2、3、6、9、18;

  那么12和18的公約數(shù)有:1、2、3、6;

  那么12和18最大的公約數(shù)是:6,記作(12,18)=6;

  求最大公約數(shù)基本方法:

  1、分解質(zhì)因數(shù)法:先分解質(zhì)因數(shù),然后把相同的因數(shù)連乘起來。

  2、短除法:先找公有的約數(shù),然后相乘。

  3、輾轉(zhuǎn)相除法:每一次都用除數(shù)和余數(shù)相除,能夠整除的那個余數(shù),就是所求的最大公約數(shù)。

  公倍數(shù):幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù);其中最小的一個,叫做這幾個數(shù)的最小公倍數(shù)。

  12的倍數(shù)有:12、24、36、48……;

  18的倍數(shù)有:18、36、54、72……;

  那么12和18的公倍數(shù)有:36、72、108……;

  那么12和18最小的公倍數(shù)是36,記作[12,18]=36;

  最小公倍數(shù)的性質(zhì):

  1、兩個數(shù)的任意公倍數(shù)都是它們最小公倍數(shù)的倍數(shù)。

  2、兩個數(shù)最大公約數(shù)與最小公倍數(shù)的乘積等于這兩個數(shù)的乘積。

  求最小公倍數(shù)基本方法:1、短除法求最小公倍數(shù);2、分解質(zhì)因數(shù)的方法

  17.?dāng)?shù)的整除

  一、基本概念和符號:

  1、整除:如果一個整數(shù)a,除以一個自然數(shù)b,得到一個整數(shù)商c,而且沒有余數(shù),那么叫做a能被b整除或b能整除a,記作b|a。

  2、常用符號:整除符號“|”,不能整除符號“”;因為符號“∵”,所以的符號“∴”;

  二、整除判斷方法:

  1.能被2、5整除:末位上的數(shù)字能被2、5整除。

  2.能被4、25整除:末兩位的數(shù)字所組成的數(shù)能被4、25整除。

  3.能被8、125整除:末三位的數(shù)字所組成的數(shù)能被8、125整除。

  4.能被3、9整除:各個數(shù)位上數(shù)字的和能被3、9整除。

  5.能被7整除:

  ①末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成數(shù)之差能被7整除。

 、谥鸫稳サ糇詈笠晃粩(shù)字并減去末位數(shù)字的2倍后能被7整除。

  6.能被11整除:

 、倌┤簧蠑(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被11整除。

 、谄鏀(shù)位上的數(shù)字和與偶數(shù)位數(shù)的數(shù)字和的差能被11整除。

 、壑鸫稳サ糇詈笠晃粩(shù)字并減去末位數(shù)字后能被11整除。

  7.能被13整除:

 、倌┤簧蠑(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被13整除。

  ②逐次去掉最后一位數(shù)字并減去末位數(shù)字的9倍后能被13整除。

  三、整除的性質(zhì):

  1.如果a、b能被c整除,那么(a+b)與(a-b)也能被c整除。

  2.如果a能被b整除,c是整數(shù),那么a乘以c也能被b整除。

  3.如果a能被b整除,b又能被c整除,那么a也能被c整除。

  4.如果a能被b、c整除,那么a也能被b和c的最小公倍數(shù)整除。

  18.余數(shù)及其應(yīng)用

  基本概念:對任意自然數(shù)a、b、q、r,如果使得a÷b=q……r,且0<r<b,那么r叫做a除以b的余數(shù),q叫做a除以b的不完全商。

  余數(shù)的性質(zhì):

  ①余數(shù)小于除數(shù)。

 、谌鬭、b除以c的余數(shù)相同,則c|a-b或c|b-a。

 、踑與b的和除以c的余數(shù)等于a除以c的余數(shù)加上b除以c的余數(shù)的和除以c的余數(shù)。

 、躠與b的積除以c的余數(shù)等于a除以c的余數(shù)與b除以c的余數(shù)的積除以c的余數(shù)。

  19.余數(shù)、同余與周期

  一、同余的定義:

 、偃魞蓚整數(shù)a、b除以m的余數(shù)相同,則稱a、b對于模m同余。

 、谝阎齻整數(shù)a、b、m,如果m|a-b,就稱a、b對于模m同余,記作a≡b(modm),讀作a同余于b模m。

  二、同余的性質(zhì):

 、僮陨硇裕篴≡a(modm);

  ②對稱性:若a≡b(modm),則b≡a(modm);

 、蹅鬟f性:若a≡b(modm),b≡c(modm),則a≡c(modm);

  ④和差性:若a≡b(modm),c≡d(modm),則a+c≡b+d(modm),a-c≡b-d(modm);

 、菹喑诵裕喝鬭≡b(modm),c≡d(modm),則a×c≡b×d(modm);

 、蕹朔叫裕喝鬭≡b(modm),則an≡bn(modm);

  ⑦同倍性:若a≡b(modm),整數(shù)c,則a×c≡b×c(modm×c);

  三、關(guān)于乘方的預(yù)備知識:

 、偃鬉=a×b,則MA=Ma×b=(Ma)b

  ②若B=c+d則MB=Mc+d=Mc×Md

  四、被3、9、11除后的余數(shù)特征:

 、僖粋自然數(shù)M,n表示M的各個數(shù)位上數(shù)字的和,則M≡n(mod9)或(mod3);

 、谝粋自然數(shù)M,X表示M的各個奇數(shù)位上數(shù)字的和,Y表示M的各個偶數(shù)數(shù)位上數(shù)字的和,則M≡Y-X或M≡11-(X-Y)(mod11);

  五、費爾馬小定理:如果p是質(zhì)數(shù)(素數(shù)),a是自然數(shù),且a不能被p整除,則ap-1≡1(modp)。

  20.分?jǐn)?shù)與百分?jǐn)?shù)的應(yīng)用

  基本概念與性質(zhì):

  分?jǐn)?shù):把單位“1”平均分成幾份,表示這樣的一份或幾份的數(shù)。

  分?jǐn)?shù)的性質(zhì):分?jǐn)?shù)的分子和分母同時乘以或除以相同的數(shù)(0除外),分?jǐn)?shù)的大小不變。

  分?jǐn)?shù)單位:把單位“1”平均分成幾份,表示這樣一份的數(shù)。

  百分?jǐn)?shù):表示一個數(shù)是另一個數(shù)百分之幾的數(shù)。

  常用方法:

 、倌嫦蛩季S方法:從題目提供條件的反方向(或結(jié)果)進(jìn)行思考。

 、趯(yīng)思維方法:找出題目中具體的量與它所占的率的直接對應(yīng)關(guān)系。

  ③轉(zhuǎn)化思維方法:把一類應(yīng)用題轉(zhuǎn)化成另一類應(yīng)用題進(jìn)行解答。最常見的是轉(zhuǎn)換成比例和轉(zhuǎn)換成倍數(shù)關(guān)系;把不同的標(biāo)準(zhǔn)(在分?jǐn)?shù)中一般指的是一倍量)下的分率轉(zhuǎn)化成同一條件下的分率。常見的處理方法是確定不同的標(biāo)準(zhǔn)為一倍量。

  ④假設(shè)思維方法:為了解題的方便,可以把題目中不相等的量假設(shè)成相等或者假設(shè)某種情況成立,計算出相應(yīng)的結(jié)果,然后再進(jìn)行調(diào)整,求出最后結(jié)果。

 、萘坎蛔兯季S方法:在變化的各個量當(dāng)中,總有一個量是不變的,不論其他量如何變化,而這個量是始終固定不變的。有以下三種情況:A、分量發(fā)生變化,總量不變。B、總量發(fā)生變化,但其中有的分量不變。C、總量和分量都發(fā)生變化,但分量之間的差量不變化。

 、尢鎿Q思維方法:用一種量代替另一種量,從而使數(shù)量關(guān)系單一化、量率關(guān)系明朗化。

 、咄堵史ǎ嚎偭亢头至恐g按照同分率變化的規(guī)律進(jìn)行處理。

 、酀舛扰浔确ǎ阂话銘(yīng)用于總量和分量都發(fā)生變化的狀況。
 

廣告合作請加微信:17310823356

京ICP備09042963號-15 京公網(wǎng)安備:11010802027854

違法和不良信息舉報電話:010-56762110 舉報郵箱:wzjubao@tal.com

奧數(shù)版權(quán)所有Copyright2005-2021 . All Rights Reserved.