日本精品一区,蜜桃六月天综合网,欧美99,草草影院ccyycom

奧數網
全國站
您現(xiàn)在的位置:奧數 > 家庭教育 > 學習方法 > 正文

小學奧數理論知識速查手冊二

來源:網絡 文章作者:匿名 2009-02-11 10:48:49

智能內容

  11.定義新運算

  基本概念:定義一種新的運算符號,這個新的運算符號包含有多種基本(混合)運算。

  基本思路:嚴格按照新定義的運算規(guī)則,把已知的數代入,轉化為加減乘除的運算,然后按照基本運算過程、規(guī)律進行運算。

  關鍵問題:正確理解定義的運算符號的意義。

  注意事項:①新的運算不一定符合運算規(guī)律,特別注意運算順序。

 、诿總新定義的運算符號只能在本題中使用。

  12.數列求和

  等差數列:在一列數中,任意相鄰兩個數的差是一定的,這樣的一列數,就叫做等差數列。

  基本概念:首項:等差數列的第一個數,一般用a1表示;

  項數:等差數列的所有數的個數,一般用n表示;

  公差:數列中任意相鄰兩個數的差,一般用d表示;

  通項:表示數列中每一個數的公式,一般用an表示;

  數列的和:這一數列全部數字的和,一般用Sn表示.

  基本思路:等差數列中涉及五個量:a1,an,d,n,sn,,通項公式中涉及四個量,如果己知其中三個,就可求出第四個;求和公式中涉及四個量,如果己知其中三個,就可以求這第四個。

  基本公式:通項公式:an=a1+(n-1)d;

  通項=首項+(項數一1)×公差;

  數列和公式:sn,=(a1+an)×n÷2;

  數列和=(首項+末項)×項數÷2;

  項數公式:n=(an+a1)÷d+1;

  項數=(末項-首項)÷公差+1;

  公差公式:d=(an-a1))÷(n-1);

  公差=(末項-首項)÷(項數-1);

  關鍵問題:確定已知量和未知量,確定使用的公式;

  13.二進制及其應用

  十進制:用0~9十個數字表示,逢10進1;不同數位上的數字表示不同的含義,十位上的2表示20,百位上的2表示200。所以234=200+30+4=2×102+3×10+4。

  =An×10n-1+An-1×10n-2+An-2×10n-3+An-3×10n-4+An-4×10n-5+An-6×10n-7+……+A3×102+A2×101+A1×100

  注意:N0=1;N1=N(其中N是任意自然數)

  二進制:用0~1兩個數字表示,逢2進1;不同數位上的數字表示不同的含義。

 。2)=An×2n-1+An-1×2n-2+An-2×2n-3+An-3×2n-4+An-4×2n-5+An-6×2n-7

  +……+A3×22+A2×21+A1×20

  注意:An不是0就是1。

  十進制化成二進制:

 、俑鶕M制滿2進1的特點,用2連續(xù)去除這個數,直到商為0,然后把每次所得的余數按自下而上依次寫出即可。

  ②先找出不大于該數的2的n次方,再求它們的差,再找不大于這個差的2的n次方,依此方法一直找到差為0,按照二進制展開式特點即可寫出。

  14.加法乘法原理和幾何計數

  加法原理:如果完成一件任務有n類方法,在第一類方法中有m1種不同方法,在第二類方法中有m2種不同方法……,在第n類方法中有mn種不同方法,那么完成這件任務共有:m1+m2.......+mn種不同的方法。

  關鍵問題:確定工作的分類方法。

  基本特征:每一種方法都可完成任務。

  乘法原理:如果完成一件任務需要分成n個步驟進行,做第1步有m1種方法,不管第1步用哪一種方法,第2步總有m2種方法……不管前面n-1步用哪種方法,第n步總有mn種方法,那么完成這件任務共有:m1×m2.......×mn種不同的方法。

  關鍵問題:確定工作的完成步驟。

  基本特征:每一步只能完成任務的一部分。

  直線:一點在直線或空間沿一定方向或相反方向運動,形成的軌跡。

  直線特點:沒有端點,沒有長度。

  線段:直線上任意兩點間的距離。這兩點叫端點。

  線段特點:有兩個端點,有長度。

  射線:把直線的一端無限延長。

  射線特點:只有一個端點;沒有長度。

  ①數線段規(guī)律:總數=1+2+3+…+(點數一1);

 、跀到且(guī)律=1+2+3+…+(射線數一1);

 、蹟甸L方形規(guī)律:個數=長的線段數×寬的線段數:

  ④數長方形規(guī)律:個數=1×1+2×2+3×3+…+行數×列數

  15.質數與合數

  質數:一個數除了1和它本身之外,沒有別的約數,這個數叫做質數,也叫做素數。

  合數:一個數除了1和它本身之外,還有別的約數,這個數叫做合數。

  質因數:如果某個質數是某個數的約數,那么這個質數叫做這個數的質因數。

  分解質因數:把一個數用質數相乘的形式表示出來,叫做分解質因數。通常用短除法分解質因數。任何一個合數分解質因數的結果是唯一的。

  分解質因數的標準表示形式:N=,其中a1、a2、a3……an都是合數N的質因數,且a1<a2<a3<……<an。

  求約數個數的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)

  互質數:如果兩個數的最大公約數是1,這兩個數叫做互質數。

  16.約數與倍數

  約數和倍數:若整數a能夠被b整除,a叫做b的倍數,b就叫做a的約數。

  公約數:幾個數公有的約數,叫做這幾個數的公約數;其中最大的一個,叫做這幾個數的最大公約數。

  最大公約數的性質:

  1、幾個數都除以它們的最大公約數,所得的幾個商是互質數。

  2、幾個數的最大公約數都是這幾個數的約數。

  3、幾個數的公約數,都是這幾個數的最大公約數的約數。

  4、幾個數都乘以一個自然數m,所得的積的最大公約數等于這幾個數的最大公約數乘以m。

  例如:12的約數有1、2、3、4、6、12;

  18的約數有:1、2、3、6、9、18;

  那么12和18的公約數有:1、2、3、6;

  那么12和18最大的公約數是:6,記作(12,18)=6;

  求最大公約數基本方法:

  1、分解質因數法:先分解質因數,然后把相同的因數連乘起來。

  2、短除法:先找公有的約數,然后相乘。

  3、輾轉相除法:每一次都用除數和余數相除,能夠整除的那個余數,就是所求的最大公約數。

  公倍數:幾個數公有的倍數,叫做這幾個數的公倍數;其中最小的一個,叫做這幾個數的最小公倍數。

  12的倍數有:12、24、36、48……;

  18的倍數有:18、36、54、72……;

  那么12和18的公倍數有:36、72、108……;

  那么12和18最小的公倍數是36,記作[12,18]=36;

  最小公倍數的性質:

  1、兩個數的任意公倍數都是它們最小公倍數的倍數。

  2、兩個數最大公約數與最小公倍數的乘積等于這兩個數的乘積。

  求最小公倍數基本方法:1、短除法求最小公倍數;2、分解質因數的方法

  17.數的整除

  一、基本概念和符號:

  1、整除:如果一個整數a,除以一個自然數b,得到一個整數商c,而且沒有余數,那么叫做a能被b整除或b能整除a,記作b|a。

  2、常用符號:整除符號“|”,不能整除符號“”;因為符號“∵”,所以的符號“∴”;

  二、整除判斷方法:

  1.能被2、5整除:末位上的數字能被2、5整除。

  2.能被4、25整除:末兩位的數字所組成的數能被4、25整除。

  3.能被8、125整除:末三位的數字所組成的數能被8、125整除。

  4.能被3、9整除:各個數位上數字的和能被3、9整除。

  5.能被7整除:

 、倌┤簧蠑底炙M成的數與末三位以前的數字所組成數之差能被7整除。

 、谥鸫稳サ糇詈笠晃粩底植p去末位數字的2倍后能被7整除。

  6.能被11整除:

 、倌┤簧蠑底炙M成的數與末三位以前的數字所組成的數之差能被11整除。

  ②奇數位上的數字和與偶數位數的數字和的差能被11整除。

 、壑鸫稳サ糇詈笠晃粩底植p去末位數字后能被11整除。

  7.能被13整除:

  ①末三位上數字所組成的數與末三位以前的數字所組成的數之差能被13整除。

 、谥鸫稳サ糇詈笠晃粩底植p去末位數字的9倍后能被13整除。

  三、整除的性質:

  1.如果a、b能被c整除,那么(a+b)與(a-b)也能被c整除。

  2.如果a能被b整除,c是整數,那么a乘以c也能被b整除。

  3.如果a能被b整除,b又能被c整除,那么a也能被c整除。

  4.如果a能被b、c整除,那么a也能被b和c的最小公倍數整除。

  18.余數及其應用

  基本概念:對任意自然數a、b、q、r,如果使得a÷b=q……r,且0<r<b,那么r叫做a除以b的余數,q叫做a除以b的不完全商。

  余數的性質:

  ①余數小于除數。

  ②若a、b除以c的余數相同,則c|a-b或c|b-a。

 、踑與b的和除以c的余數等于a除以c的余數加上b除以c的余數的和除以c的余數。

 、躠與b的積除以c的余數等于a除以c的余數與b除以c的余數的積除以c的余數。

  19.余數、同余與周期

  一、同余的定義:

 、偃魞蓚整數a、b除以m的余數相同,則稱a、b對于模m同余。

 、谝阎齻整數a、b、m,如果m|a-b,就稱a、b對于模m同余,記作a≡b(modm),讀作a同余于b模m。

  二、同余的性質:

 、僮陨硇裕篴≡a(modm);

 、趯ΨQ性:若a≡b(modm),則b≡a(modm);

 、蹅鬟f性:若a≡b(modm),b≡c(modm),則a≡c(modm);

 、芎筒钚裕喝鬭≡b(modm),c≡d(modm),則a+c≡b+d(modm),a-c≡b-d(modm);

 、菹喑诵裕喝鬭≡b(modm),c≡d(modm),則a×c≡b×d(modm);

 、蕹朔叫裕喝鬭≡b(modm),則an≡bn(modm);

 、咄缎:若a≡b(modm),整數c,則a×c≡b×c(modm×c);

  三、關于乘方的預備知識:

 、偃鬉=a×b,則MA=Ma×b=(Ma)b

  ②若B=c+d則MB=Mc+d=Mc×Md

  四、被3、9、11除后的余數特征:

  ①一個自然數M,n表示M的各個數位上數字的和,則M≡n(mod9)或(mod3);

 、谝粋自然數M,X表示M的各個奇數位上數字的和,Y表示M的各個偶數數位上數字的和,則M≡Y-X或M≡11-(X-Y)(mod11);

  五、費爾馬小定理:如果p是質數(素數),a是自然數,且a不能被p整除,則ap-1≡1(modp)。

  20.分數與百分數的應用

  基本概念與性質:

  分數:把單位“1”平均分成幾份,表示這樣的一份或幾份的數。

  分數的性質:分數的分子和分母同時乘以或除以相同的數(0除外),分數的大小不變。

  分數單位:把單位“1”平均分成幾份,表示這樣一份的數。

  百分數:表示一個數是另一個數百分之幾的數。

  常用方法:

 、倌嫦蛩季S方法:從題目提供條件的反方向(或結果)進行思考。

 、趯季S方法:找出題目中具體的量與它所占的率的直接對應關系。

 、坜D化思維方法:把一類應用題轉化成另一類應用題進行解答。最常見的是轉換成比例和轉換成倍數關系;把不同的標準(在分數中一般指的是一倍量)下的分率轉化成同一條件下的分率。常見的處理方法是確定不同的標準為一倍量。

  ④假設思維方法:為了解題的方便,可以把題目中不相等的量假設成相等或者假設某種情況成立,計算出相應的結果,然后再進行調整,求出最后結果。

  ⑤量不變思維方法:在變化的各個量當中,總有一個量是不變的,不論其他量如何變化,而這個量是始終固定不變的。有以下三種情況:A、分量發(fā)生變化,總量不變。B、總量發(fā)生變化,但其中有的分量不變。C、總量和分量都發(fā)生變化,但分量之間的差量不變化。

 、尢鎿Q思維方法:用一種量代替另一種量,從而使數量關系單一化、量率關系明朗化。

 、咄堵史ǎ嚎偭亢头至恐g按照同分率變化的規(guī)律進行處理。

  ⑧濃度配比法:一般應用于總量和分量都發(fā)生變化的狀況。
 

廣告合作請加微信:17310823356

京ICP備09042963號-15 京公網安備:11010802027854

違法和不良信息舉報電話:010-56762110 舉報郵箱:wzjubao@tal.com

奧數版權所有Copyright2005-2021 . All Rights Reserved.