解析:設正方形的邊長為a米。
a÷(5-4)=a,甲跑a秒可以比乙多跑一個邊長。
a÷(5-3)=0.5a,甲跑0.5a秒可以比丙多跑一個邊長。
若使甲能同時看見乙和丙,且他們在自己的前方,則甲比乙和丙多跑的距離在4k+3個邊長和4k+4個邊長之間。根據(jù)前面的計算,甲可能看見乙的后背的時間段可能是3a秒到4a秒之間,7a秒到8a秒之間……甲可能看見丙的后背的時間段可能是1.5a秒到2a秒之間,3.5a秒到4a秒之間……選取其中公共的時間段,即3.5a秒到4a秒之間。
在3.5a秒時,甲只有在正方形的某個頂點處才能看見丙的后背,否則必須爬到下一個頂點處才能看到丙的后背。甲爬一個邊長需要a÷5=0.2a秒,而0.2a×18=3.6a秒,所以當甲爬了3.6a秒時,才開始同時看見乙和丙的后背。
4a÷(5-4)=4a,所以經(jīng)過4a秒后甲第一次追上乙,此時甲乙丙分別跑了5圈、4圈、3圈,所以這也是出發(fā)后三人第一次處在同一位置。所以4a-3.6a=21,即a=52.5.
52.5×4=210(米),所以正方形的周長應為210米。