奧數(shù) > 小學資源庫 > 教案 > 小學數(shù)學教案 > 四年級數(shù)學下冊教案 > 正文
2009-05-11 14:33:55
乘法交換律和乘法結(jié)合律
教學目標:
1、引導學生探索和理解乘法交換律與乘法結(jié)合律。
2、培養(yǎng)學生初步的邏輯推理能力。
教學重難點:
引導學生探索概括出乘法交換率、結(jié)合律,并初步理解運用乘法交換率、結(jié)合律可以進行簡算。
教學過程:
復(fù)習舊知,合理猜想
復(fù)習加法運算定律。(啟發(fā)學生表述,教師出示定律,并用字母公式表示)
師:我們知道,乘法是求幾個相同加數(shù)的和的簡便運算。那么,對乘法來說,是不是也有類似的運算定律呢?這堂課就來研究這個問題。
一、教學乘法交換律
1、利用舊知,解決問題
創(chuàng)設(shè)情境,引入例1,算一算一共有多少張郵票,讓學生自行解答。
2、通過比較,體驗規(guī)律
啟發(fā)學生說出4×3和3×4兩種算法結(jié)果相同,所以可以寫成4×3=3×4(板書)。并引導學生表述等式含義(可讓學生比照加法交換律進行表述)。
3、再舉實例,驗證規(guī)律
、艓煟浩渌鼉蓚數(shù)相乘,也有這樣的規(guī)律嗎?(出示課本中三組算式,讓學生解答)
⑵再讓學生舉出這樣的例子,教師把上述各等式對齊板書出來。
、菐煟喝绻嬖V你44×15=660,你能不通過計算直接說出15×44的積嗎?為什么?(教師把15×44=44×15板書在以上各等式下面,并指出這種例子很多很多,在該等式下面用省略號表示)
4、抽象概括,揭示規(guī)律
、沤M織學生小組討論:以上各等式,左右兩邊的算式有什么共同點及不同點,能得出什么規(guī)律呢?(反饋評講時,著重說明左、右兩邊的算式里都是乘法,乘積相同,兩個因數(shù)也分別相同,只是因數(shù)出現(xiàn)的次序不同)
、茖W生表述討論得出的規(guī)律,教師出示結(jié)語(可將課頭出示的加法交換律稍加改動而成),揭示乘法交換律。并用字母表示,說明這里的字母可表示任何數(shù)。
5、鞏固練習,強化規(guī)律
⑴第88頁“練一練”第1題中前兩小題的填數(shù)練習。
、频88頁第2題中前兩小題(適當提示思考方法)。
⑶第85頁第4題(說判斷依據(jù),其中第3小題說明乘法交換律的推廣運用)。
6、指出用途,鼓勵探究
⑴引導學生回憶用交換因數(shù)的位置再乘一遍的方法驗算乘法,就是應(yīng)用了乘法交換律,完成第88頁“練一練”第3題。
⑵思考:在算式5×37×2及25×9×4中,你會運用乘法交換律改變原來的運算順序嗎?這樣計算有什么好處?(這里,主要要求學生知道5×37×2改成5×2×37,25×9×4改成25×4×9計算簡便,為下節(jié)課學習簡便計算作孕伏。若有學生說出5×37×2=37×5×2及25×9×4=9×25×4,別輕易否定,留在學過乘法結(jié)合律后再評講解決。)
二、教學乘法結(jié)合律
1、實例感知,初探規(guī)律
師:我們再來看例2的這幅圖,除了能計算一共有多少枝鋼筆,你還能想到什么?(共花了多少錢?)你能計算嗎?
根據(jù)學生已有知識,可能出現(xiàn)四種算法:
、牛8×10)×2⑵8×(10×2)
、牵8×2)×10⑷8×(2×10)
教師可啟發(fā)學生說出每種算法的道理及計算順序,算出結(jié)果。為突出⑴、⑶的計算順序,在第一步計算處添上小括號。
引導學生比較⑴與⑵,⑶與⑷的共同點與不同點,著重說明不同在哪里,并試著用一段話進行表述。
2、再舉例子,理解規(guī)律
、胖笇W生自學第89--90頁。
、菩〗M討論:每組的兩個等式有什么共同點和不同點,看看它們有什么關(guān)系?從這些例子中可以發(fā)現(xiàn)什么規(guī)律?
、墙M織匯報交流,教師歸納結(jié)論,并讓學生按此規(guī)律舉例(板書并在最后一例下用省略號表示)。
3、抽象概括,揭示規(guī)律
師:剛才討論發(fā)現(xiàn)的這個規(guī)律就是乘法的另一條運算定律,叫做乘法結(jié)合律。(解釋一下“結(jié)合”的含義,并出示結(jié)論)
師:你能用字母表示乘法結(jié)合律嗎?(教師板書,同時指出這里的字母可表示任何數(shù))
4、鞏固練習,強化規(guī)律
、诺91頁“練一練”第1題的填數(shù)練習。
、频91頁第2題的三小題(最后一題適當提示)。(判斷對錯)
、堑91頁第3題。用簡便方法計算。
23×4×540×7×3×525×6×4×5
25×(6×4)(8×6)×1254×8×25×125
、鹊91頁第4題。怎樣簡便就怎樣算。
250×26×4259+468+741+532
4060×1803700-2185-815
三、綜合練習
1、說出下面的等式應(yīng)用了什么運算定律?
、15×23×2=23×(15×2)
、25×(17×4)=25×4×17
⑶25×50×4×2=(25×4)×(50×2)
、9+3×5=5×3+9
2、想一想:前面的思考題5×37×2按37×(5×2)計算,25×9×4按9×(25×4)計算,也比較簡便。這里應(yīng)用了什么運算定律?
3、第91頁第4題。怎樣簡便就怎樣算。
250×26×4259+468+741+532
4060×1803700-2185-815
四、全課總結(jié)。
歡迎掃描二維碼
關(guān)注奧數(shù)網(wǎng)微信
ID:aoshu_2003
歡迎掃描二維碼
關(guān)注中考網(wǎng)微信
ID:zhongkao_com