1、一個(gè)自然數(shù)減去45及加上44都仍是完全平方數(shù),求此數(shù)。
解:設(shè)此自然數(shù)為x,依題意可得
x-45=m^2; (1)
x+44=n^2 (2)
(m,n為自然數(shù))
(2)-(1)可得 :
n^2-m^2=89或: (n-m)(n+m)=89
因?yàn)閚+m>n-m
又因?yàn)?9為質(zhì)數(shù),
所以:n+m=89; n-m=1
解之,得n=45。代入(2)得。故所求的自然數(shù)是1981。
2、求證:四個(gè)連續(xù)的整數(shù)的積加上1,等于一個(gè)奇數(shù)的平方(1954年基輔數(shù)學(xué)競(jìng)賽題)。
分析 設(shè)四個(gè)連續(xù)的整數(shù)為,其中n為整數(shù)。欲證
是一奇數(shù)的平方,只需將它通過(guò)因式分解而變成一個(gè)奇數(shù)的平方即可。
證明 設(shè)這四個(gè)整數(shù)之積加上1為m,則
m為平方數(shù)
而n(n+1)是兩個(gè)連續(xù)整數(shù)的積,所以是偶數(shù);又因?yàn)?n+1是奇數(shù),因而n(n+1)+2n+1是奇數(shù)。這就證明了m是一個(gè)奇數(shù)的平方。
3、求證:11,111,1111,這串?dāng)?shù)中沒有完全平方數(shù)(1972年基輔數(shù)學(xué)競(jìng)賽題)。
分析 形如的數(shù)若是完全平方數(shù),必是末位為1或9的數(shù)的平方,即
或
在兩端同時(shí)減去1之后即可推出矛盾。
證明 若,則
因?yàn)樽蠖藶槠鏀?shù),右端為偶數(shù),所以左右兩端不相等。
若,則
因?yàn)樽蠖藶槠鏀?shù),右端為偶數(shù),所以左右兩端不相等。
綜上所述,不可能是完全平方數(shù)。
另證 由為奇數(shù)知,若它為完全平方數(shù),則只能是奇數(shù)的平方。但已證過(guò),奇數(shù)的平方其十位數(shù)字必是偶數(shù),而十位上的數(shù)字為1,所以不是完全平方數(shù)。
4、求滿足下列條件的所有自然數(shù):
(1)它是四位數(shù)。
(2)被22除余數(shù)為5。
(3)它是完全平方數(shù)。
解:設(shè),其中n,N為自然數(shù),可知N為奇數(shù)。
11|N - 4或11|N + 4
或
k = 1
k = 2
k = 3
k = 4
k = 5
所以此自然數(shù)為1369, 2601, 3481, 5329, 6561, 9025。
5、甲、乙兩人合養(yǎng)了n頭羊,而每頭羊的賣價(jià)又恰為n元,全部賣完后,兩人分錢方法如下:先由甲拿十元,再由乙拿十元,如此輪流,拿到最后,剩下不足十元,輪到乙拿去。為了平均分配,甲應(yīng)該補(bǔ)給乙多少元(第2屆“祖沖之杯”初中數(shù)學(xué)邀請(qǐng)賽試題)?
解:n頭羊的總價(jià)為元,由題意知元中含有奇數(shù)個(gè)10元,即完全平方數(shù)的十位數(shù)字是奇數(shù)。如果完全平方數(shù)的十位數(shù)字是奇數(shù),則它的個(gè)位數(shù)字一定是6。所以,的末位數(shù)字為6,即乙最后拿的是6元,從而為平均分配,甲應(yīng)補(bǔ)給乙2元。