奧數 > 小學資源庫 > 教案 > 小學數學教案 > 六年級數學下冊教案 > 正文
2009-09-22 23:29:52 下載試卷 標簽:六年級 教案 數學
從上圖發(fā)現:=。這就是分數基本性質的直觀背景。
分數基本性質:分數的分子和分母都乘或除以相同的數(0除外),分數的大小不變。
的分數單位是,的分數單位是。
根據分數的基本性質,我們能夠把任何一個分數變換成另一個分數單位的等值分數。也就是說,分數基本性質解決了分數單位的換算問題。統一了分數單位,異分母的分數才能進行加減運算。
例如,+=+
=×2+
。×(2+1)
。。
在分數的運算中,把異分母分數變成同分母的分數的過程,叫通分;通分是把較小的分數單位變換為較大的分數單位。在分數的運算中,有時也需要把較大的分數單位變換成較小的分數單位,這個過程
叫約分。
例如,×=
=
。。
通分和約分的理論根據都是分數的基本性質。
分數基本性質還是分數集合分類的一個標準。根據分數基本性質,可以把分數集合中所有等值分數都歸為一類,于是分數集合就被分成無數個這樣的等值分數的類別。如,上述和屬于同一類,和屬于同一類。
在分數集合的每一個等值分數的類別中,都有且只有一個最簡分數。所謂最簡分數,就是它的分子和分母除1以外再也沒有其他的公因數了。如,上述、都分別是它們所在的等值分數類別中的最簡分數。
在分數集合中,最簡分數就是每一個等值分數類別的代表。確定這一個代表的重要意義是,確保分數運算與自然數運算一樣,運算結果具有單值性(唯一性)。這就是為什么要對運算結果進行約分,直到最簡分數為止。
小數單位0.1、0.01、......分別與分數單位、、......是等價的,小數是特殊的分數。小數與分數可以互相轉化。
例如,把0.25化為分數。
方法1:(根據小數的意義)
0.25=0.01×25
。×25
。
=。
方法2:(把小數視為分母是1的分數)
0.25=
=
。
=。
方法1和方法2中,每一步都是可逆的,所以如果把化為小數,也有與上述對應的兩種方法。此外,把分數化為小數還可以直接利用除法,即=1÷4=0.25。
在上述兩種方法中,分數的基本性質都發(fā)揮了作用。
分數基本性質與商不變規(guī)律,事實上是從不同的形式表示相同的規(guī)律。本質相同而形式不同,主要是適應不同的情境。所以,從商不變規(guī)律的重要性亦可反觀分數基本性質的重要性。
遇到小數除法,根據商不變規(guī)律可以轉化為整數除法,從而以整數除法為基礎把把小數除法與整數除法統一起來。
例如,2.4÷0.4=(24×0.1)÷(4×0.1)=24÷4=6;
或者,2.4÷0.4=(2.4×100)÷(0.4×100)=24÷4=6.
如果把2.4÷0.4寫成分數形式,也未嘗不可,不過將出現被稱為“繁分數”的分數形式。把繁分數化為簡單分數,也必須根據分數的基本性質。
例如,=
。
。6.
有了“商不變規(guī)律”,在算式的等值變形中可以避免出現繁分數的形式,所以繁分數的概念很早以前就已經不出現在小數數學的教科書中了;即使出現了“繁分數”,我們就把它當作一般分數來對待,也不必專門為之增加一個新名稱。
當溝通了分數、除法與比的本質的聯系后,我們可以想到,其實比也有一個與分數基本性質等價的基本性質。即
比的前項與后項都乘或除以相同的數(0除外),比值不變。
根據比的這一基本性質,比可以進行等值變形。在比的實際應用中,如果不掌握比的等值變形,就會寸步難行。不過,比的等值變形不能局限于比的化簡。在筆者《分數認識的三次深化與發(fā)展》一文中,已經說明把按比分配轉化為分數問題來解決的時候,事實上要把整數比轉化為分數比的形式,而且這些表示部分與整體關系的分數的總和還必須等于1(即部分之和等于整體)。
下面再看兩個實例,進一步體會比的必要性。
例1一種混凝土是由水泥、沙子和石子混合成的,其中水泥與沙子的比是1︰1.5,沙子與石子的比是1︰。這種混凝土中水泥、沙子和石子的比是多少?
問題中兩個已知的比,分別表示混凝土中兩個成分的比,而且這兩個比的基準不一致。解決這個問題的關鍵是統一比的基準。因為這兩個比中都含有沙子的成分,所以選擇沙子為統一的基準,就能把兩個比統一起來。
解:水泥︰沙子=1︰1.5=10︰15=︰1;
沙子︰石子=1︰。
所以,水泥︰沙子︰石子=︰1︰=2︰3︰5。
當某種混合物的成分多于兩種,并要表示它各種成分之間的倍比關系時,比的表示形式就得天獨厚志顯示出它的優(yōu)越性。
例2(阿拉伯民間流傳的數學故事)有一位阿拉伯老人,生前養(yǎng)有11匹馬,他去世前立下遺囑:大兒子、二兒子、小兒子分別繼承遺產的、、。兒子們想來想去沒法分:他們所得的都不是整數,即分別為、和,總不能把一匹馬割成幾塊來分吧?聰明的鄰居牽來了自己的1匹馬,對他們說:“你們看,現在有12匹馬了,老大得12匹的就是6匹,老二得12匹的就是3匹,老三得12匹的就是2匹,還剩一匹我照舊牽回家去。”這樣把分的問題解決了。
學習比的知識,我們都會變得和阿拉伯兄弟的那個鄰居一樣聰明。這個知識就是比的等值變形。
解:︰︰=(×12)︰(×12)︰(×12)
=6︰3︰2,
而且6+3+2=11。
所以,老大、老二、老三分別分得的馬分別是6匹、3匹和2匹。
這位阿拉伯鄰居一定是一名優(yōu)秀教師,他善于把上述抽象的演算過程直觀地表現出來。他牽來自己的一匹馬,湊成12匹馬,這個12恰是
、、這三個分數分母的最小公倍數,這個數也是把這三個分數的比化為整數比的關鍵所在。
綜上,可以看到分數基本性質的重要地位和作用:
、笔前逊謹祻囊粋分數單位換算為另一個分數單位的基礎;
、彩欠謹档耐ǚ峙c約分的根據,也是一些算式等值變形的重要途徑之一;
⒊是分數集合被分成等值分數類別的分類標準,在每一個類別中都有且只有一個最簡分數,使得分數運算的結果具有唯一性。
。2007年春節(jié)初一于福州)
歡迎掃描二維碼
關注奧數網微信
ID:aoshu_2003
歡迎掃描二維碼
關注中考網微信
ID:zhongkao_com