圍棋
晶晶用圍棋子擺成一個(gè)三層空心方陣,最外一層每邊有圍棋子14個(gè).晶晶擺這個(gè)方陣共用圍棋子多少個(gè)?
分析:方陣每向里面一層,每邊的個(gè)數(shù)就減少2個(gè).知道最外面一層每邊放14個(gè),就可以求第二層及第三層每邊個(gè)數(shù).知道各層每邊的個(gè)數(shù),就可以求出各層總數(shù)。
解:最外邊一層棋子個(gè)數(shù):(14-1)×4=52(個(gè))
第二層棋子個(gè)數(shù):(14-2-1)×4=44(個(gè))
第三層棋子個(gè)數(shù):(14-2×2-1)×4=36(個(gè)).
擺這個(gè)方陣共用棋子:
52+44+36=132(個(gè))
還可以這樣想:
中空方陣總個(gè)數(shù)=(每邊個(gè)數(shù)一層數(shù))×層數(shù)×4進(jìn)行計(jì)算。
解:(14-3)×3×4=132(個(gè))
答:擺這個(gè)方陣共需132個(gè)圍棋子。