推理問(wèn)題
甲、乙兩所學(xué)校的學(xué)生中,有些學(xué)生互相認(rèn)識(shí).已知甲校的學(xué)生中任何一個(gè)人也認(rèn)不全乙校的學(xué)生,乙校的任意兩名學(xué)生都有甲校中的一個(gè)公共朋友.問(wèn):能否在甲校中找出兩個(gè)學(xué)生A、B,從乙校中找出三個(gè)學(xué)生C、D、E,使得A認(rèn)識(shí)C、D,不認(rèn)識(shí)E,B認(rèn)識(shí)D、E,不認(rèn)識(shí)C?說(shuō)明理由.(認(rèn)識(shí)是相互的,即甲認(rèn)識(shí)乙時(shí),乙也認(rèn)識(shí)甲).
分析:如果選乙校學(xué)生中任意兩個(gè)人為C、D,那么甲校中有認(rèn)識(shí)C、D的人,設(shè)它為A.因?yàn)锳認(rèn)不全乙校學(xué)生,所以在乙校中有學(xué)生E,A不認(rèn)識(shí)E.這時(shí)A認(rèn)識(shí)C、D,不認(rèn)識(shí)E.按這個(gè)思路,再考慮選B時(shí)有些麻煩.雖然對(duì)于乙校的D、E,可知甲校中有學(xué)生認(rèn)識(shí)D、E,如果把甲校的這個(gè)認(rèn)識(shí)D、E的人選為B.這個(gè)B可能認(rèn)識(shí)C,這樣就達(dá)不到題目要求了.之所以陷入上述困境,原因在于C、D在乙校中太"任意"了,在乙校中任選C、D,就可能使得最后甲校中的B選不出來(lái),看來(lái)要選特殊一點(diǎn)的人.
因?yàn)榧仔W(xué)生都認(rèn)不全乙校的學(xué)生,所以存在甲校的認(rèn)識(shí)乙校學(xué)生數(shù)目最多的人(或認(rèn)識(shí)乙校學(xué)生數(shù)目最多的人之一).選他為A.因?yàn)锳認(rèn)不全乙校學(xué)生,取A不認(rèn)識(shí)的乙校的一名學(xué)生為E,設(shè)A認(rèn)識(shí)的乙校的一名學(xué)生為D.
對(duì)于D、E,在甲校中有一個(gè)人,設(shè)它為B,B認(rèn)識(shí)D、E.因?yàn)锽認(rèn)識(shí)E,A不認(rèn)識(shí)E,所以A、B不是同一個(gè)人.
在A認(rèn)識(shí)的乙校學(xué)生中,一定有B不認(rèn)識(shí)的人,若不然,當(dāng)A認(rèn)識(shí)的乙校的任何一名學(xué)生都認(rèn)識(shí)B時(shí),B至少要比A多認(rèn)識(shí)一個(gè)人E,這與"甲校學(xué)生中認(rèn)識(shí)乙校人數(shù)最多的人之一是A"的假定矛盾.設(shè)在乙校中,學(xué)生C認(rèn)識(shí)A而不認(rèn)識(shí)B,這樣就有:
A認(rèn)識(shí)C、D,不認(rèn)識(shí)E,B認(rèn)識(shí)D、E,不認(rèn)識(shí)C.