計(jì)算:
1+2+1
1+2+3+2+1
1+2+3+4+3+2+1
1+2+3+4+5+4+3+2+1
…………………
根據(jù)上面四式計(jì)算結(jié)果的規(guī)律,求:1+2+3+……+192+193+192+……+3+2+1的值。
分析:通過(guò)觀察,我們發(fā)現(xiàn):所有數(shù)的和=中間數(shù)×中間數(shù)
詳解:1+2+3+……+192+193+192+……+3+2+1
。193×193
=37249
評(píng)注:這個(gè)數(shù)列我們特別講一個(gè)很復(fù)雜的方法,但很鍛煉大家的思維的。
設(shè) 1式.............1+2+1
2式.............1+2+3+2+1
3式.............1+2+3+4+3+2+1
4式.............1+2+3+4+5+4+3+2+1
5式.............1+2+3+4+5+6+5+4+3+2+1
……
觀察發(fā)現(xiàn)1式與2式差5,2式與3式差7,3式與4式差9,4式與5式差11……
又通過(guò)觀察發(fā)現(xiàn)每?jī)墒较嗖畹臄?shù)都相差2(例如:1式與2式差5,2式與3式差7,7-5=2;再例如:2式與3式差7,3式與4式差9,9-7=2)
再觀察 1式與2式差5 5與2式中的3差2
2式與3式差7 7與3式中的4差3
3式與4式差9 9與4式中的5差4
4式與5式差11 11與5式中的6差5
觀察上面這一步 最后相差的都是式子中間的數(shù)減1
所以最后一個(gè)式子(1+2+3+......+191+192+193+192+191+.....+2+1)與它上面一個(gè)式子(1+2+3+......+190+191+192+191+190+.....+2+1)的差為:193+(193-1)=385
所以(1+2+3+......+191+192+193+192+191+.....+2+1)
=(1+2+1)+(5+7+9+11+13+15+17+...........+385)
=4+390*[(385-5)/2+1]/2
=4+390*191/2
=4+37245
=37249
當(dāng)然,這樣的方法考試不可取,平常煉一下,多見(jiàn)識(shí)幾種方法還是有好處的。