解小學(xué)數(shù)學(xué)題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這叫換元法。換元的實(shí)質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標(biāo)準(zhǔn)型問題標(biāo)準(zhǔn)化、復(fù)雜問題簡單化,變得容易處理。
換元法又稱輔助元素法、變量代換法。通過引進(jìn)新的變量,可以把分散的條件聯(lián)系起來,隱含的條件顯露出來,或者把條件與結(jié)論聯(lián)系起來;蛘咦?yōu)槭煜さ男问,把?fù)雜的計算和推證簡化。
它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問題中有廣泛的應(yīng)用。
換元的方法有:局部換元、三角換元、均值換元等。局部換元又稱整體換元,是在已知或者未知中,某個代數(shù)式幾次出現(xiàn),而用一個字母來代替它從而簡化問題,當(dāng)然有時候要通過變形才能發(fā)現(xiàn)。例如解不等式:4+2-2≥0,先變形為設(shè)2=t(t>0),而變?yōu)槭煜さ囊辉尾坏仁角蠼夂椭笖?shù)方程的問題。