分數(shù)與百分數(shù)的應用
基本概念與性質(zhì):
分數(shù):把單位“1”平均分成幾份,表示這樣的一份或幾份的數(shù)。
分數(shù)的性質(zhì):分數(shù)的分子和分母同時乘以或除以相同的數(shù)(0除外),分數(shù)的大小不變。
分數(shù)單位:把單位“1”平均分成幾份,表示這樣一份的數(shù)。
百分數(shù):表示一個數(shù)是另一個數(shù)百分之幾的數(shù)。
常用方法:
、倌嫦蛩季S方法:從題目提供條件的反方向(或結果)進行思考。
、趯季S方法:找出題目中具體的量與它所占的率的直接對應關系。
、坜D化思維方法:把一類應用題轉化成另一類應用題進行解答。最常見的是轉換成比例和轉換成倍數(shù)關系;把不同的標準(在分數(shù)中一般指的是一倍量)下的分率轉化成同一條件下的分率。常見的處理方法是確定不同的標準為一倍量。
、芗僭O思維方法:為了解題的方便,可以把題目中不相等的量假設成相等或者假設某種情況成立,計算出相應的結果,然后再進行調(diào)整,求出最后結果。
、萘坎蛔兯季S方法:在變化的各個量當中,總有一個量是不變的,不論其他量如何變化,而這個量是始終固定不變的。有以下三種情況:A、分量發(fā)生變化,總量不變。B、總量發(fā)生變化,但其中有的分量不變。C、總量和分量都發(fā)生變化,但分量之間的差量不變化。
、尢鎿Q思維方法:用一種量代替另一種量,從而使數(shù)量關系單一化、量率關系明朗化。
、咄堵史ǎ嚎偭亢头至恐g按照同分率變化的規(guī)律進行處理。
、酀舛扰浔确ǎ阂话銘糜诳偭亢头至慷及l(fā)生變化的狀況。
編輯推薦