抽屜原理
抽屜原則一:如果把(n+1)個物體放在n個抽屜里,那么必有一個抽屜中至少放有2個物體。
例:把4個物體放在3個抽屜里,也就是把4分解成三個整數(shù)的和,那么就有以下四種情況:
、4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
觀察上面四種放物體的方式,我們會發(fā)現(xiàn)一個共同特點:總有那么一個抽屜里有2個或多于2個物體,也就是說必有一個抽屜中至少放有2個物體。
抽屜原則二:如果把n個物體放在m個抽屜里,其中n>m,那么必有一個抽屜至少有:
①k=[n/m ]+1個物體:當(dāng)n不能被m整除時。
、趉=n/m個物體:當(dāng)n能被m整除時。
理解知識點:[X]表示不超過X的最大整數(shù)。
例[4.351]=4;[0.321]=0;[2.9999]=2;
關(guān)鍵問題:構(gòu)造物體和抽屜。也就是找到代表物體和抽屜的量,而后依據(jù)抽屜原則進行運算。
編輯推薦