例1.由于天氣逐漸變冷,牧場上的草每天以固定的速度在減少,經計算,牧場上的草可供20頭牛吃5天,或可供16頭牛吃6天。那么,可供11頭牛吃幾天?
解答:設一頭牛一天吃的草量為一份。牧場每天減少的草量:(20×5-16×6)÷(6-5)=4份,原來的草量:(20+4)×5=120份,可供11頭牛吃120÷(11+4)=8天。
總結:想辦法從變化中找到不變的量。牧場上原有的草是不變的,新長出的草雖然在變化,但是因為是勻速生長,所以每天新長出的草量也是不變的。正確計算草地上原有的草及每天新長出的草,問題就會迎刃而解。
知識衍變
牛吃草基本問題就先介紹到這,希望大家掌握這種方法,以后出現樣吃草問題,驢吃草問題也知道怎么做,甚至,以下這些問題都可以應用牛吃草問題解決方法。
例2.自動扶梯以均勻速度由下往上行駛,小明和小麗從扶梯上樓,已知小明每分鐘走25級臺階,小麗每分鐘走20級臺階,結果小明用了5分鐘,小麗用了6分鐘分別到達樓上。該扶梯共有多少級臺階?
【分析】在這道題中,"總的草量"變成了"扶梯的臺階總級數","草"變成了"臺階","牛"變成了"速度",所以也可以看成是"牛吃草"問題來解答。
例3.兩只蝸牛同時從一口井的井頂爬向井底。白天往下爬,兩只蝸牛的爬行速度是不同的,一只每天爬行20分米,另一只每天爬行15分米。黑夜往下滑,兩只蝸;械乃俣葏s是相同的,結果一只蝸牛恰好用了5個晝夜到達井底,另一只恰好用了6個晝夜到達井底。那么,井深多少米?
大家說這里什么是牛?什么是草?都什么是不變的?
解答:蝸牛每夜下降:(20×5-15×6)÷(6-5)=10分米,所以井深:(20+10)×5=150分米=15米
例4.一個水池,池底有泉水不斷涌出,用10部抽水機20小時可以把水抽干,用15部相同的抽水機10小時可把水抽干。那么用25部這樣的抽水機多少小時可以把水抽干?
解答:設一臺抽水機一小時抽水一份。則每小時涌出的水量是:(20×10-15×10)÷(20-10)=5份,池內原有的水是:(10-5)×20=100份.所以,用25部抽水機需要:100÷(25-5)=5小時
思維拓展
例5.一個牧場上的青草每天都勻速生長。這片青草可供27頭牛吃6天,或供23頭牛吃9天,現有一群牛吃了4天后賣掉2頭,余下的牛又吃了4天將草吃完。這群牛原來有多少頭?
解答:設每頭牛每天的吃草量為1份。每天新生的草量為:(23×9-27×6)÷(20-10)=15份,原有的草量為(27-15)×6=72份。如兩頭牛不賣掉,這群牛在4+4=8天內吃草量72+15×8+2×4=200份。所以這群牛原來有200÷8=25頭。