一個圓的周長為1.26米,兩只螞蟻從一條直徑的兩端同時出發(fā)沿圓周相向爬行.這兩只螞蟻每秒分別爬行5.5厘米和3.5厘米.它們每爬行1秒,3秒,5秒…(連續(xù)的奇數(shù)),就調(diào)頭爬行.那么,它們相遇時已爬行的時間是多少秒?
分析:
道題難在螞蟻爬行的方向不斷地發(fā)生變化,那么如果這兩只螞蟻都不調(diào)頭爬行,相遇時它們已經(jīng)爬行了多長時間呢?非常簡單,由于半圓周長為:1.26÷2=0.63米=63厘米,所以可列式為:1.26÷2÷(5.5+3.5)=7(秒);我們發(fā)現(xiàn)螞蟻爬行方向的變化是有規(guī)律可循的,它們每爬行1秒、3秒、5秒、…(連續(xù)的奇數(shù))就調(diào)頭爬行.每只螞蟻先向前爬1秒,然后調(diào)頭爬3秒,再調(diào)頭爬5秒,這時相當(dāng)于在向前爬1秒的基礎(chǔ)上又向前爬行了2秒;同理,接著向后爬7秒,再向前爬9秒,再向后爬11秒,再向前爬13秒,這就相當(dāng)于一共向前爬行了1+2+2+2=7(秒),正好相遇.