日本精品一区,蜜桃六月天综合网,欧美99,草草影院ccyycom

奧數(shù)網(wǎng)
全國站
您現(xiàn)在的位置:奧數(shù) > 福州奧數(shù) > 福州小升初 > 正文

2018福州小升初點數(shù)學奧數(shù)知識點匯總

來源:家長幫論壇福州站 文章作者:knjb 2018-03-22 20:05:39

智能內(nèi)容

  

  一年級奧數(shù)

  一年級的孩子剛剛踏入小學。不論是學習習慣還是學習方法,都需要全面的培養(yǎng)和正確的引導(dǎo),這就需要家長對整個六年的小學學習有一個全面的規(guī)劃。

  學習重點難點解析:

  巧算與速算的基本知識:對于一年級的學生來說,計算是學生學習時遇到的第一個問題。如果能夠在看似無序的算式中尋找到一定的規(guī)律,化繁為簡,那么學生一定能夠增強學習數(shù)學的信心,提高學習數(shù)學的興趣。另外,計算與速算是各種后續(xù)問題學習的基礎(chǔ)。學好數(shù)學,首先就要過計算這關(guān)。

  認識并學會數(shù)各種基本圖形:正方形、長方體、圓和立方體等是小學學習中最常見的圖形。通過系統(tǒng)的指導(dǎo),使一年級的學生能夠計算出各種基本圖形的個數(shù);使學生建立起有序思維,為建立思維模式打下基礎(chǔ)。

  學習簡單的枚舉法:枚舉法對于一年級的學生來說的確是有一定的困難。在華數(shù)課本中,介紹這一難題時采用數(shù)數(shù)這種更為直觀的方式,將復(fù)雜抽象的問題形象化,便于孩子們理解。

  枚舉法訓練的重點在于有序的思維方式,學習之初將抽象問題形象化,能夠更好地引導(dǎo)學生去主動思考,建立起自己的思維方式。

  數(shù)字的奇與偶、不等與相等等關(guān)于數(shù)論的基礎(chǔ)知識:數(shù)論問題是后續(xù)學習中的一個重點,而這學期將要學到的:數(shù)字的奇與偶、不等與相等等無疑將會是今后學習的基礎(chǔ),在這里我們把數(shù)論問題分解為各種類型逐一講解,使華數(shù)學習更加系統(tǒng)。

  二年級奧數(shù)

  二年級是開發(fā)孩子智力、形成良好思維習慣的最佳時期,學習奧數(shù)不僅能夠極大地鍛煉孩子的思維能力,也能為孩子之后的學習打下堅實的基礎(chǔ)。對于二年級的學生家長來說,激發(fā)孩子對華數(shù)的興趣是最主要的。

  學習重點難點解析:

  計算要過關(guān):對于二年級學生的奧數(shù)學習來說,最先碰到的問題就是計算問題,計算問題是重點也是難點。

  根據(jù)學校數(shù)學的學習情況,孩子還沒有學習乘除法的列豎式,尤其是乘法的列豎式在二年級華數(shù)的學習中要求的比較多,比如華數(shù)課本下冊第三講速算與巧算中就多次用到了乘法,另外一些應(yīng)用題中也會有所應(yīng)用。所以對于學習下冊華數(shù)的學生,首先計算關(guān)一定要過。

  枚舉是難點:對于二年級的學生來說,有序思維和抽象思維是比較困難的,對于問題,二年級的學生更多的愿意以湊數(shù)來嘗試解答問題。

  而枚舉法的問題需要的就是孩子的有序思維,比如華數(shù)課本上冊幾枚硬幣湊錢的方法,下冊的整數(shù)拆分都屬于枚舉法的問題。這類問題不僅要求孩子要有序,同時直觀性不強,對于孩子理解有一定困難。建議家長可以比較抽象的問題形象化,比如上面舉到的漢堡和汽水的例子就更加形象。

  應(yīng)用題要接觸:二年級華數(shù)課本下冊中的后幾講已經(jīng)接觸到了應(yīng)用題部分,對于倍數(shù)等概念也有學習,建議學有余力的孩子可以適當接觸三年級中的部分問題,但是難度不要像三年級華數(shù)課本中那樣大。

  三年級奧數(shù)

  三年級的奧數(shù)學習是小學奧數(shù)最重要的基礎(chǔ)階段,只有牢固掌握了三年級奧數(shù)最基本的知識技巧,才能有效的促進今后的數(shù)學學習,最終在競賽、以及小升初中有所斬獲。

  學習重點難點解析:

  三年級屬于奧數(shù)學習打基礎(chǔ)階段,孩子進入三年級以后,隨著年齡的增長,孩子的計算能力,認知能力,邏輯分析能力相比于一、二年級有很大的提高,這個時期是奧數(shù)思維形成的關(guān)鍵時期,是學奧數(shù)的黃金時段,所以能否把握住三年級這一黃金時段,關(guān)系到以后小升初的成與敗。

  下面就簡要介紹一下三年級下學期學習的關(guān)鍵知識點。

  1.運用運算定律及性質(zhì)速算與巧算

  計算是數(shù)學學習的基本知識,也是學好奧數(shù)的基礎(chǔ)。能否又快又準的算出答案,是歷年數(shù)學競賽考察的一個基本點。在三年級,主要學習了加法與乘法運算定律,其中應(yīng)用乘法分配率是競賽中考察巧算的一大重點;除此之外,競賽中還時?疾鞄Х“搬家”與添括號/去括號這兩種通過改變運算順序進而簡便運算的思路。例如:17×5+17×7+13×5+13×7

  問題解析:由于四個加項沒有公共的乘數(shù),不能直接應(yīng)用乘法分配率?梢钥紤]先分組應(yīng)用乘法分配率,在觀察的思路,原式=(17×5+17×7)+(13×5+13×7)=17×(5+7)+13×(5+7)=17×12+13×12=(17+13)×12=30×12

  2、學習假設(shè)思想解決雞兔同籠問題

  雞兔同籠問題源于我國1500年前左右的偉大數(shù)學著作《孫子算經(jīng)》,其中記載的31題,“今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?”翻譯成現(xiàn)代文就是說有若干只雞兔同在一個籠子里,從上面數(shù),有35個頭;從下面數(shù),有94只腳。求籠中各有幾只雞和兔?

  問題解析:我們知道每只雞2只腳,每只兔子4只腳,我們不妨假設(shè)籠子里面只有雞,那么應(yīng)該有只腳,而事實上有94只腳,原因就是我們把一部分兔子假設(shè)成了雞。
 

廣告合作請加微信:17310823356

京ICP備09042963號-15 京公網(wǎng)安備:11010802027854

違法和不良信息舉報電話:010-56762110 舉報郵箱:wzjubao@tal.com

奧數(shù)版權(quán)所有Copyright2005-2021 . All Rights Reserved.