希爾伯特數(shù)學問題及其解決情況(1)
來源:本站原創(chuàng) 2005-03-20 08:06:12

(1)康托的連續(xù)統(tǒng)基數(shù)問題。
1874年,康托猜測在可數(shù)集基數(shù)和實數(shù)集基數(shù)之間沒有別的基數(shù),即著名的連續(xù)統(tǒng)假設。1938年,僑居美國的奧地利數(shù)理邏輯學家哥德爾證明連續(xù)統(tǒng)假設與ZF集合論公理系統(tǒng)的無矛盾性。1963年,美國數(shù)學家科思(P.Choen)證明連續(xù)統(tǒng)假設與ZF公理彼此獨立。因而,連續(xù)統(tǒng)假設不能用ZF公理加以證明。在這個意義下,問題已獲解決。 |
相關文章
- 小學1-6年級作文素材大全
- 全國小學升初中語數(shù)英三科試題匯總
- 小學1-6年級數(shù)學天天練
- 小學1-6年級奧數(shù)類型例題講解整理匯總
- 小學1-6年級奧數(shù)練習題整理匯總
- 小學1-6年級奧數(shù)知識點匯總
- 小學1-6年級語數(shù)英教案匯總
- 小學語數(shù)英試題資料大全
- 小學1-6年級語數(shù)英期末試題整理匯總
- 小學1-6年級語數(shù)英期中試題整理匯總
- 小學1-6年語數(shù)英單元試題整理匯總
點擊查看更多