日本精品一区,蜜桃六月天综合网,欧美99,草草影院ccyycom

奧數(shù)網(wǎng)
全國站
您現(xiàn)在的位置:奧數(shù) > 濰坊奧數(shù) > 濰坊小升初 > 正文

2018濰坊小升初數(shù)學(xué)總復(fù)習(xí)資料整理(三)(2)

來源:家長幫論壇濰坊站 文章作者:anniea2015 2018-03-14 22:21:04

智能內(nèi)容

  差額平均數(shù):是把各個(gè)大于或小于標(biāo)準(zhǔn)數(shù)的部分之和被總份數(shù)均分,求的是標(biāo)準(zhǔn)數(shù)與各數(shù)相差之和的平均數(shù)。

  數(shù)量關(guān)系式:(大數(shù)-小數(shù))÷2=小數(shù)應(yīng)得數(shù)    最大數(shù)與各數(shù)之差的和÷總份數(shù)=最大數(shù)應(yīng)給數(shù)      最大數(shù)與個(gè)數(shù)之差的和÷總份數(shù)=最小數(shù)應(yīng)得數(shù)。

  例:一輛汽車以每小時(shí) 100 千米 的速度從甲地開往乙地,又以每小時(shí) 60 千米的速度從乙地開往甲地。求這輛車的平均速度。

  分析:求汽車的平均速度同樣可以利用公式。此題可以把甲地到乙地的路程設(shè)為“ 1 ”,則汽車行駛的總路程為“ 2 ”,從甲地到乙地的速度為 100 ,所用的時(shí)間為  ,汽車從乙地到甲地速度為 60 千米 ,所用的時(shí)間是  ,汽車共行的時(shí)間為  +  =  , 汽車的平均速度為 2 ÷  =75 (千米)

 。2) 歸一問題:已知相互關(guān)聯(lián)的兩個(gè)量,其中一種量改變,另一種量也隨之而改變,其變化的規(guī)律是相同的,這種問題稱之為歸一問題。

  根據(jù)求“單一量”的步驟的多少,歸一問題可以分為一次歸一問題,兩次歸一問題。

  根據(jù)球癡單一量之后,解題采用乘法還是除法,歸一問題可以分為正歸一問題,反歸一問題。

  一次歸一問題,用一步運(yùn)算就能求出“單一量”的歸一問題。又稱“單歸一。”

  兩次歸一問題,用兩步運(yùn)算就能求出“單一量”的歸一問題。又稱“雙歸一。”

  正歸一問題:用等分除法求出“單一量”之后,再用乘法計(jì)算結(jié)果的歸一問題。

  反歸一問題:用等分除法求出“單一量”之后,再用除法計(jì)算結(jié)果的歸一問題。

  解題關(guān)鍵:從已知的一組對應(yīng)量中用等分除法求出一份的數(shù)量(單一量),然后以它為標(biāo)準(zhǔn),根據(jù)題目的要求算出結(jié)果。

  數(shù)量關(guān)系式:單一量×份數(shù)=總數(shù)量(正歸一)

  總數(shù)量÷單一量=份數(shù)(反歸一)

  例 一個(gè)織布工人,在七月份織布 4774 米 , 照這樣計(jì)算,織布 6930 米 ,需要多少天?

  分析:必須先求出平均每天織布多少米,就是單一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)

  (3)歸總問題:是已知單位數(shù)量和計(jì)量單位數(shù)量的個(gè)數(shù),以及不同的單位數(shù)量(或單位數(shù)量的個(gè)數(shù)),通過求總數(shù)量求得單位數(shù)量的個(gè)數(shù)(或單位數(shù)量)。

  特點(diǎn):兩種相關(guān)聯(lián)的量,其中一種量變化,另一種量也跟著變化,不過變化的規(guī)律相反,和反比例算法彼此相通。

  數(shù)量關(guān)系式:單位數(shù)量×單位個(gè)數(shù)÷另一個(gè)單位數(shù)量 = 另一個(gè)單位數(shù)量        單位數(shù)量×單位個(gè)數(shù)÷另一個(gè)單位數(shù)量= 另一個(gè)單位數(shù)量。

  例 修一條水渠,原計(jì)劃每天修 800 米 , 6 天修完。實(shí)際 4 天修完,每天修了多少米?

  分析:因?yàn)橐蟪雒刻煨薜拈L度,就必須先求出水渠的長度。所以也把這類應(yīng)用題叫做“歸總問題”。不同之處是“歸一”先求出單一量,再求總量,歸總問題是先求出總量,再求單一量。 80 0 × 6 ÷ 4=1200 (米)

 。4) 和差問題:已知大小兩個(gè)數(shù)的和,以及他們的差,求這兩個(gè)數(shù)各是多少的應(yīng)用題叫做和差問題。

  解題關(guān)鍵:是把大小兩個(gè)數(shù)的和轉(zhuǎn)化成兩個(gè)大數(shù)的和(或兩個(gè)小數(shù)的和),然后再求另一個(gè)數(shù)。

  解題規(guī)律:(和+差)÷2 = 大數(shù)   大數(shù)-差=小數(shù)

 。ê停睿÷2=小數(shù)       和-小數(shù)= 大數(shù)

  例 某加工廠甲班和乙班共有工人 94 人,因工作需要臨時(shí)從乙班調(diào) 46 人到甲班工作,這時(shí)乙班比甲班人數(shù)少 12 人,求原來甲班和乙班各有多少人?

  分析:從乙班調(diào) 46 人到甲班,對于總數(shù)沒有變化,現(xiàn)在把乙數(shù)轉(zhuǎn)化成 2 個(gè)乙班,即 9 4 - 12 ,由此得到現(xiàn)在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在調(diào)出 46 人之前應(yīng)該為 41+46=87 (人),甲班為 9 4 - 87=7 (人)

 。5)和倍問題:已知兩個(gè)數(shù)的和及它們之間的倍數(shù) 關(guān)系,求兩個(gè)數(shù)各是多少的應(yīng)用題,叫做和倍問題。

  解題關(guān)鍵:找準(zhǔn)標(biāo)準(zhǔn)數(shù)(即1倍數(shù))一般說來,題中說是“誰”的幾倍,把誰就確定為標(biāo)準(zhǔn)數(shù)。求出倍數(shù)和之后,再求出標(biāo)準(zhǔn)的數(shù)量是多少。根據(jù)另一個(gè)數(shù)(也可能是幾個(gè)數(shù))與標(biāo)準(zhǔn)數(shù)的倍數(shù)關(guān)系,再去求另一個(gè)數(shù)(或幾個(gè)數(shù))的數(shù)量。

  解題規(guī)律:和÷倍數(shù)和=標(biāo)準(zhǔn)數(shù)   標(biāo)準(zhǔn)數(shù)×倍數(shù)=另一個(gè)數(shù)

  例:汽車運(yùn)輸場有大小貨車 115 輛,大貨車比小貨車的 5 倍多 7 輛,運(yùn)輸場有大貨車和小汽車各有多少輛?

  分析:大貨車比小貨車的 5 倍還多 7 輛,這 7 輛也在總數(shù) 115 輛內(nèi),為了使總數(shù)與( 5+1 )倍對應(yīng),總車輛數(shù)應(yīng)( 115-7 )輛 。

  列式為( 115-7 )÷( 5+1 ) =18 (輛), 18 × 5+7=97 (輛)

  (6)差倍問題:已知兩個(gè)數(shù)的差,及兩個(gè)數(shù)的倍數(shù)關(guān)系,求兩個(gè)數(shù)各是多少的應(yīng)用題。

  解題規(guī)律:兩個(gè)數(shù)的差÷(倍數(shù)-1 )= 標(biāo)準(zhǔn)數(shù)  標(biāo)準(zhǔn)數(shù)×倍數(shù)=另一個(gè)數(shù)。

  例 甲乙兩根繩子,甲繩長 63 米 ,乙繩長 29 米 ,兩根繩剪去同樣的長度,結(jié)果甲所剩的長度是乙繩 長的 3 倍,甲乙兩繩所剩長度各多少米? 各減去多少米?
 

廣告合作請加微信:17310823356

京ICP備09042963號(hào)-15 京公網(wǎng)安備:11010802027854

違法和不良信息舉報(bào)電話:010-56762110 舉報(bào)郵箱:wzjubao@tal.com

奧數(shù)版權(quán)所有Copyright2005-2021 . All Rights Reserved.