【答案】
解:根據(jù)“每個人至少答出三題中的一道題”可知答題情況分為7類:只答第1題,只答第2題,只答第3題,只答第1、2題,只答第1、3題,只答2、3題,答1、2、3題。分別設(shè)各類的人數(shù)為a1、a2、a3、a12、a13、a23、a123由(1)知:a1+a2+a3+a12+a13+a23+a123=25…①由(2)知:a2+a23=(a3+ a23)×2……②由(3)知:a12+a13+a123=a1-1……③由(4)知:a1=a2+a3……④再由②得a23=a2-a3×2……⑤再由③④得a12+a13+a123=a2+a3-1⑥然后將④⑤⑥代入①中,整理得到a2×4+a3=26由于a2、a3均表示人數(shù),可以求出它們的整數(shù)解:當a2=6、5、4、3、2、1時,a3=2、6、10、14、18、22又根據(jù)a23=a2-a3×2……⑤可知:a2>a3因此,符合條件的只有a2=6,a3=2。然后可以推出a1=8,a12+a13+a123=7,a23=2,總?cè)藬?shù)=8+6+2+7+2=25,檢驗所有條件均符。故只解出第二題的學生人數(shù)a2=6人。
點擊查看更多:六年級數(shù)學天天練試題及答案
試題下載:小學各年級試卷及答案下載
奧數(shù)網(wǎng)提醒:
單元試題、各科教案、奧數(shù)練習題
盡在“奧數(shù)網(wǎng)”微信公眾號