數(shù)學(xué)猜想系列故事——蜂窩猜想
來源:網(wǎng)絡(luò) 文章作者:匿名 2009-03-28 16:24:36
數(shù)學(xué)猜想系列故事——蜂窩猜想
加拿大科學(xué)記者德富林在《環(huán)球郵報》上撰文稱,經(jīng)過1600年努力,數(shù)學(xué)家終于證明蜜蜂是世界上工作效率最高的建筑者。
四世紀(jì)古希臘數(shù)學(xué)家佩波斯提出,蜂窩的優(yōu)美形狀,是自然界最有效勞動的代表。他猜想,人們所見到的、截面呈六邊形的蜂窩,是蜜蜂采用最少量的蜂蠟建造成的。他的這一猜想稱為"蜂窩猜想",但這一猜想一直沒有人能證明。
美密執(zhí)安大學(xué)數(shù)學(xué)家黑爾宣稱,他已破解這一猜想。蜂窩是一座十分精密的建筑工程。蜜蜂建巢時,青壯年工蜂負(fù)責(zé)分泌片狀新鮮蜂蠟,每片只有針頭大校而另一些工蜂則負(fù)責(zé)將這些蜂蠟仔細(xì)擺放到一定的位置,以形成豎直六面柱體。每一面蜂蠟隔墻厚度及誤差都非常小。6面隔墻寬度完全相同,墻之間的角度正好120度,形成一個完美的幾何圖形。人們一直疑問,蜜蜂為什么不讓其巢室呈三角形、正方形或其他形狀呢?隔墻為什么呈平面,而不是呈曲面呢?雖然蜂窩是一個三維體建筑,但每一個蜂巢都是六面柱體,而蜂蠟墻的總面積僅與蜂巢的截面有關(guān)。由此引出一個數(shù)學(xué)問題,即尋找面積最大、周長最小的平面圖形。
1943年,匈牙利數(shù)學(xué)家陶斯巧妙地證明,在所有首尾相連的正多邊形中,正多邊形的周長是最小的。1943年,匈牙利數(shù)學(xué)家陶斯巧妙地證明,在所有首尾相連的正多邊形中,正多邊形的周長是最小的。但如果多邊形的邊是曲線時,會發(fā)生什么情況呢?陶斯認(rèn)為,正六邊形與其他任何形狀的圖形相比,它的周長最小,但他不能證明這一點(diǎn)。而黑爾在考慮了周邊是曲線時,無論是曲線向外突,還是向內(nèi)凹,都證明了由許多正六邊形組成的圖形周長最校他已將19頁的證明過程放在因特網(wǎng)上,許多專家都已看到了這一證明,認(rèn)為黑爾的證明是正確的。
相關(guān)文章
- 小學(xué)1-6年級作文素材大全
- 全國小學(xué)升初中語數(shù)英三科試題匯總
- 小學(xué)1-6年級數(shù)學(xué)天天練
- 小學(xué)1-6年級奧數(shù)類型例題講解整理匯總
- 小學(xué)1-6年級奧數(shù)練習(xí)題整理匯總
- 小學(xué)1-6年級奧數(shù)知識點(diǎn)匯總
- 小學(xué)1-6年級語數(shù)英教案匯總
- 小學(xué)語數(shù)英試題資料大全
- 小學(xué)1-6年級語數(shù)英期末試題整理匯總
- 小學(xué)1-6年級語數(shù)英期中試題整理匯總
- 小學(xué)1-6年語數(shù)英單元試題整理匯總