四.排列組合問(wèn)題
21.有五對(duì)夫婦圍成一圈,使每一對(duì)夫婦的夫妻二人動(dòng)相鄰的排法有( )
A 768種 B 32種 C 24種 D 2的10次方中
解:
根據(jù)乘法原理,分兩步:
第一步是把5對(duì)夫妻看作5個(gè)整體,進(jìn)行排列有5×4×3×2×1=120種不同的排法,但是因?yàn)槭菄梢粋(gè)首尾相接的圈,就會(huì)產(chǎn)生5個(gè)5個(gè)重復(fù),因此實(shí)際排法只有120÷5=24種。
第二步每一對(duì)夫妻之間又可以相互換位置,也就是說(shuō)每一對(duì)夫妻均有2種排法,總共又2×2×2×2×2=32種
綜合兩步,就有24×32=768種。
22. 若把英語(yǔ)單詞hello的字母寫錯(cuò)了,則可能出現(xiàn)的錯(cuò)誤共有 ( )
A 119種 B 36種 C 59種 D 48種
解:
5全排列5*4*3*2*1=120
有兩個(gè)l所以120/2=60
原來(lái)有一種正確的所以60-1=59
五.容斥原理問(wèn)題
23. 有100種赤貧.其中含鈣的有68種,含鐵的有43種,那么,同時(shí)含鈣和鐵的食品種類的最大值和最小值分別是( )
A 43,25 B 32,25 C32,15 D 43,11
解:根據(jù)容斥原理最小值68+43-100=11
最大值就是含鐵的有43種
24.在多元智能大賽的決賽中只有三道題.
已知:(1)某校25名學(xué)生參加競(jìng)賽,每個(gè)學(xué)生至少解出一道題;
(2)在所有沒有解出第一題的學(xué)生中,解出第二題的人數(shù)是解出第三題的人數(shù)的2倍
(3)只解出第一題的學(xué)生比余下的學(xué)生中解出第一題的人數(shù)多1人;
(4)只解出一道題的學(xué)生中,有一半沒有解出第一題,那么只解出第二題的學(xué)生人數(shù)是( )
A,5 B,6 C,7 D,8
解:根據(jù)“每個(gè)人至少答出三題中的一道題”可知答題情況分為7類:只答第1題,只答第2題,只答第3題,只答第1、2題,只答第1、3題,只答2、3題,答1、2、3題。
分別設(shè)各類的人數(shù)為a1、a2、a3、a12、a13、a23、a123
由(1)知:a1+a2+a3+a12+a13+a23+a123=25…①
由(2)知:a2+a23=(a3+ a23)×2……②
由(3)知:a12+a13+a123=a1-1……③
由(4)知:a1=a2+a3……④
再由②得a23=a2-a3×2……⑤
再由③④得a12+a13+a123=a2+a3-1⑥
然后將④⑤⑥代入①中,整理得到
a2×4+a3=26
由于a2、a3均表示人數(shù),可以求出它們的整數(shù)解:
當(dāng)a2=6、5、4、3、2、1時(shí),a3=2、6、10、14、18、22
又根據(jù)a23=a2-a3×2……⑤可知:a2>a3
因此,符合條件的只有a2=6,a3=2。
然后可以推出a1=8,a12+a13+a123=7,a23=2,總?cè)藬?shù)=8+6+2+7+2=25,檢驗(yàn)所有條件均符。
故只解出第二題的學(xué)生人數(shù)a2=6人。
25.一次考試共有5道試題。做對(duì)第1、2、3、、4、5題的分別占參加考試人數(shù)的95%、80%、79%、74%、85%。如果做對(duì)三道或三道以上為合格,那么這次考試的合格率至少是多少?
答案:及格率至少為71%。
假設(shè)一共有100人考試
100-95=5
100-80=20
100-79=21
100-74=26
100-85=15
5+20+21+26+15=87(表示5題中有1題做錯(cuò)的最多人數(shù))
87÷3=29(表示5題中有3題做錯(cuò)的最多人數(shù),即不及格的人數(shù)最多為29人)
100-29=71(及格的最少人數(shù),其實(shí)都是全對(duì)的)
及格率至少為71%
六.抽屜原理、奇偶性問(wèn)題
26.一只布袋中裝有大小相同但顏色不同的手套,顏色有黑、紅、藍(lán)、黃四種,問(wèn)最少要摸出幾只手套才能保證有3副同色的?
解:可以把四種不同的顏色看成是4個(gè)抽屜,把手套看成是元素,要保證有一副同色的,就是1個(gè)抽屜里至少有2只手套,根據(jù)抽屜原理,最少要摸出5只手套。這時(shí)拿出1副同色的后4個(gè)抽屜中還剩3只手套。再根據(jù)抽屜原理,只要再摸出2只手套,又能保證有一副手套是同色的,以此類推。
把四種顏色看做4個(gè)抽屜,要保證有3副同色的,先考慮保證有1副就要摸出5只手套。這時(shí)拿出1副同色的后,4個(gè)抽屜中還剩下3只手套。根據(jù)抽屜原理,只要再摸出2只手套,又能保證有1副是同色的。以此類推,要保證有3副同色的,共摸出的手套有:5+2+2=9(只)
答:最少要摸出9只手套,才能保證有3副同色的。
27.有四種顏色的積木若干,每人可任取1-2件,至少有幾個(gè)人去取,才能保證有3人能取得完全一樣?
答案為21
解:
每人取1件時(shí)有4種不同的取法,每人取2件時(shí),有6種不同的取法.
當(dāng)有11人時(shí),能保證至少有2人取得完全一樣:
當(dāng)有21人時(shí),才能保證到少有3人取得完全一樣.
28.某盒子內(nèi)裝50只球,其中10只是紅色,10只是綠色,10只是黃色,10只是藍(lán)色,其余是白球和黑球,為了確保取出的球中至少包含有7只同色的球,問(wèn):最少必須從袋中取出多少只球?
解:需要分情況討論,因?yàn)闊o(wú)法確定其中黑球與白球的個(gè)數(shù)。
當(dāng)黑球或白球其中沒有大于或等于7個(gè)的,那么就是:
6*4+10+1=35(個(gè))
如果黑球或白球其中有等于7個(gè)的,那么就是:
6*5+3+1=34(個(gè))
如果黑球或白球其中有等于8個(gè)的,那么就是:
6*5+2+1=33
如果黑球或白球其中有等于9個(gè)的,那么就是:
6*5+1+1=32
29.地上有四堆石子,石子數(shù)分別是1、9、15、31如果每次從其中的三堆同時(shí)各取出1個(gè),然后都放入第四堆中,那么,能否經(jīng)過(guò)若干次操作,使得這四堆石子的個(gè)數(shù)都相同?(如果能請(qǐng)說(shuō)明具體操作,不能則要說(shuō)明理由)
不可能。
因?yàn)榭倲?shù)為1+9+15+31=56
56/4=14
14是一個(gè)偶數(shù)
而原來(lái)1、9、15、31都是奇數(shù),取出1個(gè)和放入3個(gè)也都是奇數(shù),奇數(shù)加減若干次奇數(shù)后,結(jié)果一定還是奇數(shù),不可能得到偶數(shù)(14個(gè))。