日本精品一区,蜜桃六月天综合网,欧美99,草草影院ccyycom

奧數(shù)網(wǎng)
全國站
您現(xiàn)在的位置:奧數(shù) > 小學(xué)新聞 > 小升初試題 > 小升初數(shù)學(xué)試題 > 正文

小學(xué)各階段奧數(shù)學(xué)習(xí)重難點(diǎn)解析(3)

來源:奧數(shù)網(wǎng)整理 2011-10-10 10:40:14

智能內(nèi)容

   小學(xué)三年級

   1.運(yùn)用運(yùn)算定律及性質(zhì)速算與巧算

  計(jì)算是數(shù)學(xué)學(xué)習(xí)的基本知識,也是學(xué)好奧數(shù)的基礎(chǔ)。能否又快又準(zhǔn)的算出答案,是歷年數(shù)學(xué)競賽考察的一個(gè)基本點(diǎn)。在三年級,主要學(xué)習(xí)了加法與乘法運(yùn)算定 律,其中應(yīng)用乘法分配率是競賽中考察巧算的一大重點(diǎn);除此之外,競賽中還時(shí)?疾鞄Х“搬家”與添括號/去括號這兩種通過改變運(yùn)算順序進(jìn)而簡便運(yùn)算的思 路。例如:17×5+17×7+13×5+13×7

  問題解析:由于四個(gè)加項(xiàng)沒有公共的乘數(shù),不能直接應(yīng)用乘法分配率?梢钥紤]先分組應(yīng)用乘法分配率,在觀察的思路,原式=(17×5+17×7)+(13×5+13×7)

  =17×(5+7)+13×(5+7)=17×12+13×12=(17+13)×12=30×12=360

  2.學(xué)習(xí)假設(shè)思想解決雞兔同籠問題

  雞兔同籠問題源于我國1500年前左右的偉大數(shù)學(xué)著作《孫子算經(jīng)》,其中記載的31題,“今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾 何?”翻譯成現(xiàn)代文就是說有若干只雞兔同在一個(gè)籠子里,從上面數(shù),有35個(gè)頭;從下面數(shù),有94只腳。求籠中各有幾只雞和兔?

  問題解析:我們知道每只雞2只腳,每只兔子4只腳,我們不妨假設(shè)籠子里面只有雞,那么應(yīng)該有只腳,而事實(shí)上有94只腳,原因就是我們把一部分兔子假設(shè)成了雞。

  我們知道,每只兔子比雞多2只腳,那么一共應(yīng)該有只兔子,剩下了 35 – 12 = 23 只雞。

  對于一般的雞兔同籠問題,我們有

  雞數(shù)=(兔的腳數(shù) 總頭數(shù) – 總腳數(shù))(兔的腳數(shù) - 雞的腳數(shù))

  兔數(shù)=(總腳數(shù) - 雞的腳數(shù) 總頭數(shù) )(兔的腳數(shù) - 雞的腳數(shù))

  3.平均數(shù)應(yīng)用題

  “平均數(shù)”這個(gè)數(shù)學(xué)概念在同學(xué)們的日常學(xué)習(xí)和生活中經(jīng)常用到。例如,三年級上學(xué)期期末考完試,可以計(jì)算全班同學(xué)的數(shù)學(xué)“平均成績”,同學(xué)與爸爸媽媽三 個(gè)人的“平均年齡”等等,都是我們經(jīng)常碰到的求平均數(shù)的問題。根據(jù)我們所舉的例子,可以總結(jié)出求平均數(shù)的一般公式:總數(shù)和÷人數(shù)(或個(gè)數(shù))=平均數(shù)。比如 說人大附小三年級(一)班第2小組5名同學(xué)上學(xué)期期末數(shù)學(xué)成績分別是93,95,98,97,90,那么第2小組5名同學(xué)的數(shù)學(xué)平均分是多少呢?

  問題解析:根據(jù)我們總結(jié)的公式,首先可以求出第2小組5名同學(xué)數(shù)學(xué)的總分一共是93+95+98+97+92=475,所以他們的平均分是475÷5=95(分)。

  4.和差倍應(yīng)用題

  和差倍問題是由和差問題、和倍問題、差倍問題三類問題組成的。和倍問題是已知大小兩個(gè)數(shù)的和與它們的倍數(shù)關(guān)系,求大小兩個(gè)數(shù)的應(yīng)用題,一般可應(yīng)用公 式:數(shù)量和÷對應(yīng)的倍數(shù)和=“1”倍量;差倍問題就是已知大小兩個(gè)數(shù)的差和它們的倍數(shù)關(guān)系,求大小兩個(gè)數(shù)的應(yīng)用題,一般可應(yīng)用公式:數(shù)量差÷對應(yīng)的倍數(shù) 差=“1”倍量;和差問題是已知大小兩個(gè)數(shù)的和與兩個(gè)數(shù)的差,求大小兩個(gè)數(shù)的應(yīng)用題一般可應(yīng)用公式:大數(shù)=(數(shù)量和+數(shù)量差)÷2,小數(shù)=(數(shù)量和-數(shù)量 差)÷2。為了幫助我們理解題意,弄清題目中兩種量彼此間的關(guān)系,常采用畫線段圖的方法以線段的相對長度來表示兩種量間的關(guān)系,以便于找到解題的途徑。

  5.年齡問題

  基本的年齡問題可以說是和差倍問題生活化的典型應(yīng)用。同時(shí),年齡問題也有其鮮明的特點(diǎn):任何兩個(gè)人之間的年齡差保持不變。解決年齡問題,關(guān)鍵就是要抓住以上兩點(diǎn)。例如:哥哥兩年后的年齡是弟弟年齡的2倍,今年哥哥比弟弟大5歲,那么今年弟弟多少歲?

  問題解析:由于兩人之間的年齡差不變,在2年之后哥哥仍然比弟弟大5歲,那時(shí)哥哥是弟弟年齡的2倍,這就變成了一道差倍問題,也就是說弟弟的年齡在2年后是5÷(2-1)=5(歲),所以今年弟弟5-2=3(歲)。

 

廣告合作請加微信:17310823356

京ICP備09042963號-15 京公網(wǎng)安備:11010802027854

違法和不良信息舉報(bào)電話:010-56762110 舉報(bào)郵箱:wzjubao@tal.com

奧數(shù)版權(quán)所有Copyright2005-2021 . All Rights Reserved.